On -Ranks in the Class Field Tower Problem
Christian Maire[1]; Cam McLeman[2]
- [1] Laboratoire de Mathématiques UMR 6623 CNRS - Université de Franche-Comté 16, Route de Gray 25030 Besançon cedex FRANCE
- [2] Mathematics Department University of Michigan - Flint 303 E. Kearsley St. Flint, MI, 48502 USA
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 2, page 57-68
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topMaire, Christian, and McLeman, Cam. "On $p^2$-Ranks in the Class Field Tower Problem." Annales mathématiques Blaise Pascal 21.2 (2014): 57-68. <http://eudml.org/doc/275447>.
@article{Maire2014,
abstract = {Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the $p^2$-rank of the class group as a quantity of relevance in the $p$-class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups have a 2-rank of 5 must have an infinite 2-class field tower.},
affiliation = {Laboratoire de Mathématiques UMR 6623 CNRS - Université de Franche-Comté 16, Route de Gray 25030 Besançon cedex FRANCE; Mathematics Department University of Michigan - Flint 303 E. Kearsley St. Flint, MI, 48502 USA},
author = {Maire, Christian, McLeman, Cam},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Hilbert class field towers},
language = {eng},
month = {7},
number = {2},
pages = {57-68},
publisher = {Annales mathématiques Blaise Pascal},
title = {On $p^2$-Ranks in the Class Field Tower Problem},
url = {http://eudml.org/doc/275447},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Maire, Christian
AU - McLeman, Cam
TI - On $p^2$-Ranks in the Class Field Tower Problem
JO - Annales mathématiques Blaise Pascal
DA - 2014/7//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 2
SP - 57
EP - 68
AB - Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the $p^2$-rank of the class group as a quantity of relevance in the $p$-class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups have a 2-rank of 5 must have an infinite 2-class field tower.
LA - eng
KW - Hilbert class field towers
UR - http://eudml.org/doc/275447
ER -
References
top- Elliot Benjamin, Franz Lemmermeyer, C. Snyder, Real quadratic fields with abelian -class field tower, J. Number Theory 73 (1998), 182-194 Zbl0919.11073MR1658015
- E. S. Golod, I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272 Zbl0136.02602MR161852
- Christian Maire, Un raffinement du théorème de Golod-Safarevic, Nagoya Math. J. 150 (1998), 1-11 Zbl0923.11158MR1633138
- René Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220 Zbl0589.12011MR863524
- W. A. Stein, Sage Mathematics Software (Version 5.11), (Y2013)
- B. B. Venkov, H. Koh, The -tower of class fields for an imaginary quadratic field, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 46 (1974), 5-13, 140 Zbl0335.12022MR382235
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.