Chen–Ruan Cohomology of and
- [1] Institut fur Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 4, page 1469-1509
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPagani, Nicola. "Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$." Annales de l’institut Fourier 63.4 (2013): 1469-1509. <http://eudml.org/doc/275455>.
@article{Pagani2013,
abstract = {In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable $n$-pointed curves of genus $1$. In the first part of the paper we study and describe stack theoretically the twisted sectors of $\mathcal\{M\}_\{1,n\}$ and $\overline\{\mathcal\{M\}\}_\{1,n\}$. In the second part, we study the orbifold intersection theory of $\overline\{\mathcal\{M\}\}_\{1,n\}$. We suggest a definition for an orbifold tautological ring in genus $1$, which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.},
affiliation = {Institut fur Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany},
author = {Pagani, Nicola},
journal = {Annales de l’institut Fourier},
keywords = {moduli spaces; Gromov-Witten; orbifold; cohomology; tautological ring},
language = {eng},
number = {4},
pages = {1469-1509},
publisher = {Association des Annales de l’institut Fourier},
title = {Chen–Ruan Cohomology of $\mathcal\{M\}_\{1,n\}$ and $\overline\{\mathcal\{M\}\}_\{1,n\}$},
url = {http://eudml.org/doc/275455},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Pagani, Nicola
TI - Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1469
EP - 1509
AB - In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable $n$-pointed curves of genus $1$. In the first part of the paper we study and describe stack theoretically the twisted sectors of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$. In the second part, we study the orbifold intersection theory of $\overline{\mathcal{M}}_{1,n}$. We suggest a definition for an orbifold tautological ring in genus $1$, which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.
LA - eng
KW - moduli spaces; Gromov-Witten; orbifold; cohomology; tautological ring
UR - http://eudml.org/doc/275455
ER -
References
top- Dan Abramovich, Tom Graber, Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 1-24, Amer. Math. Soc., Providence, RI Zbl1067.14055MR1950940
- Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398 Zbl1193.14070MR2450211
- Alejandro Adem, Johann Leida, Yongbin Ruan, Orbifolds and stringy topology, 171 (2007), Cambridge University Press, Cambridge Zbl1157.57001MR2359514
- Pavel Belorousski, Chow Rings of moduli spaces of pointed elliptic curves, (1998) MR2716762
- Lawrence Breen, On the classification of -gerbes and -stacks, (1994) Zbl0818.18005MR1301844
- Weimin Chen, Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31 Zbl1063.53091MR2104605
- Fred Diamond, Jerry Shurman, A first course in modular forms, 228 (2005), Springer-Verlag, New York Zbl1062.11022MR2112196
- Carel Faber, Rahul Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13-49 Zbl1084.14054MR2120989
- Barbara Fantechi, Lothar Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), 197-227 Zbl1086.14046MR1971293
- William Fulton, Intersection Theory, (1984), Springer-Verlag, Berlin Zbl0885.14002MR732620
- Ezra Getzler, Operads and moduli of genus 0 Riemann surfaces, The moduli space of curves (Texel Island, 1994) 129 (1995), 199-230, Birkhäuser Boston, Boston, MA Zbl0851.18005MR1363058
- Ezra Getzler, Intersection theory on and elliptic Gromov-Witten invariants, J. Amer. Math. Soc. 10 (1997), 973-998 Zbl0909.14002MR1451505
- Ezra Getzler, The semi-classical approximation for modular operads, Comm. Math. Phys. 194 (1998), 481-492 Zbl0912.18007MR1627677
- Jean Giraud, Cohomologie non abélienne (French), 179 (1971), Springer-Verlag, Berlin-New York Zbl0226.14011MR344253
- Tom Graber, Rahul Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), 93-109 Zbl1079.14511MR1960923
- Tom Graber, Ravi Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005), 1-37 Zbl1088.14007MR2176546
- Sean Keel, Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574 Zbl0768.14002MR1034665
- Étienne Mann, Orbifold quantum cohomology of weighted projective spaces, J. Algebraic Geom. 17 (2008), 137-166 Zbl1146.14029MR2357682
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry Vol II 36 (1983), 271-328, Birkhäuser Boston, Boston, MA Zbl0554.14008MR717614
- Nicola Pagani, Chen–Ruan cohomology of moduli of curves, (2009) Zbl1236.14032
- Nicola Pagani, The Chen-Ruan cohomology of moduli of curves of genus 2 with marked points, Adv. Math. 229 (2012), 1643-1687 Zbl1236.14032MR2871153
- Nicola Pagani, The orbifold cohomology of moduli of hyperelliptic curves, Int. Math. Res. Not. IMRN (2012), 2163-2178 Zbl1259.14029MR2923163
- Nicola Pagani, Orsola Tommasi, The orbifold cohomology of moduli of genus curves Zbl1314.14051
- Dan Petersen, The structure of the tautological ring in genus Zbl1291.14045
- Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1992), Springer-Verlag, New York Zbl0585.14026MR1329092
- James E. Spencer, The stringy Chow ring of the moduli stack of genus-two curves and its Deligne-Mumford compactification, (2004) MR2705012
- James E. Spencer, The orbifold cohomology of the moduli of genus-two curves, Gromov-Witten theory of spin curves and orbifolds 403 (2006), 167-184, Amer. Math. Soc., Providence, RI Zbl1115.14018MR2234890
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), 613-670 Zbl0694.14001MR1005008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.