Uniform Lipschitz estimates in stochastic homogenization
- [1] Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France
Journées Équations aux dérivées partielles (2014)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topArmstrong, Scott. "Uniform Lipschitz estimates in stochastic homogenization." Journées Équations aux dérivées partielles (2014): 1-11. <http://eudml.org/doc/275471>.
@article{Armstrong2014,
abstract = {We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining $L^\infty $-type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.},
affiliation = {Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France},
author = {Armstrong, Scott},
journal = {Journées Équations aux dérivées partielles},
keywords = {Stochastic homogenization; Lipschitz regularity; error estimate},
language = {eng},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Uniform Lipschitz estimates in stochastic homogenization},
url = {http://eudml.org/doc/275471},
year = {2014},
}
TY - JOUR
AU - Armstrong, Scott
TI - Uniform Lipschitz estimates in stochastic homogenization
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
AB - We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining $L^\infty $-type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.
LA - eng
KW - Stochastic homogenization; Lipschitz regularity; error estimate
UR - http://eudml.org/doc/275471
ER -
References
top- S. N. Armstrong, J.-C. Mourrat, Lipschitz regularity for elliptic equations with random coefficients Zbl06545484
- S. N. Armstrong, Z. Shen, Lipschitz estimates in almost-periodic homogenization
- S. N. Armstrong, C. K. Smart, Quantitative stochastic homogenization of convex integral functionals Zbl06591562
- M. Avellaneda, F.-H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math. 40 (1987), 803-847 Zbl0632.35018MR910954
- M. Avellaneda, F.-H. Lin, bounds on singular integrals in homogenization, Comm. Pure Appl. Math. 44 (1991), 897-910 Zbl0761.42008MR1127038
- G. Dal Maso, L. Modica, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4) 144 (1986), 347-389 Zbl0607.49010MR870884
- G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 (1986), 28-42 Zbl0582.60034MR850613
- A. Gloria, S. Neukamm, F. Otto, A regularity theory for random elliptic operators, (Preprint, arXiv:1409.2678) Zbl1307.35029
- A. Gloria, F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab. 39 (2011), 779-856 Zbl1215.35025MR2789576
- A. Gloria, F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab. 22 (2012), 1-28 Zbl06026087MR2932541
- A. Gloria, F. Otto, Quantitative results on the corrector equation in stochastic homogenization, (Preprint) Zbl06540728
- S. M. Kozlov, The averaging of random operators, Mat. Sb. (N.S.) 109(151) (1979), 188-202, 327 Zbl0415.60059MR542557
- A Naddaf, T. Spencer, Estimates on the variance of some homogenization problems, (1998, Unpublished preprint) Zbl0871.35010
- G. C. Papanicolaou, S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) 27 (1981), 835-873, North-Holland, Amsterdam Zbl0499.60059MR712714
- V. V. Yurinskiĭ, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh. 27 (1986), 167-180, 215 Zbl0614.60051MR867870
- V. V. Yurinskiĭ, Homogenization error estimates for random elliptic operators, Mathematics of random media (Blacksburg, VA, 1989) 27 (1991), 285-291, Amer. Math. Soc., Providence, RI Zbl0729.60060MR1117252
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.