Uniform Lipschitz estimates in stochastic homogenization

Scott Armstrong[1]

  • [1] Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France

Journées Équations aux dérivées partielles (2014)

  • page 1-11
  • ISSN: 0752-0360

Abstract

top
We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining L -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.

How to cite

top

Armstrong, Scott. "Uniform Lipschitz estimates in stochastic homogenization." Journées Équations aux dérivées partielles (2014): 1-11. <http://eudml.org/doc/275471>.

@article{Armstrong2014,
abstract = {We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining $L^\infty $-type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.},
affiliation = {Ceremade (UMR CNRS 7534) Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France},
author = {Armstrong, Scott},
journal = {Journées Équations aux dérivées partielles},
keywords = {Stochastic homogenization; Lipschitz regularity; error estimate},
language = {eng},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Uniform Lipschitz estimates in stochastic homogenization},
url = {http://eudml.org/doc/275471},
year = {2014},
}

TY - JOUR
AU - Armstrong, Scott
TI - Uniform Lipschitz estimates in stochastic homogenization
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
AB - We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining $L^\infty $-type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.
LA - eng
KW - Stochastic homogenization; Lipschitz regularity; error estimate
UR - http://eudml.org/doc/275471
ER -

References

top
  1. S. N. Armstrong, J.-C. Mourrat, Lipschitz regularity for elliptic equations with random coefficients Zbl06545484
  2. S. N. Armstrong, Z. Shen, Lipschitz estimates in almost-periodic homogenization 
  3. S. N. Armstrong, C. K. Smart, Quantitative stochastic homogenization of convex integral functionals Zbl06591562
  4. M. Avellaneda, F.-H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math. 40 (1987), 803-847 Zbl0632.35018MR910954
  5. M. Avellaneda, F.-H. Lin, L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math. 44 (1991), 897-910 Zbl0761.42008MR1127038
  6. G. Dal Maso, L. Modica, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. (4) 144 (1986), 347-389 Zbl0607.49010MR870884
  7. G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 (1986), 28-42 Zbl0582.60034MR850613
  8. A. Gloria, S. Neukamm, F. Otto, A regularity theory for random elliptic operators, (Preprint, arXiv:1409.2678) Zbl1307.35029
  9. A. Gloria, F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab. 39 (2011), 779-856 Zbl1215.35025MR2789576
  10. A. Gloria, F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab. 22 (2012), 1-28 Zbl06026087MR2932541
  11. A. Gloria, F. Otto, Quantitative results on the corrector equation in stochastic homogenization, (Preprint) Zbl06540728
  12. S. M. Kozlov, The averaging of random operators, Mat. Sb. (N.S.) 109(151) (1979), 188-202, 327 Zbl0415.60059MR542557
  13. A Naddaf, T. Spencer, Estimates on the variance of some homogenization problems, (1998, Unpublished preprint) Zbl0871.35010
  14. G. C. Papanicolaou, S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) 27 (1981), 835-873, North-Holland, Amsterdam Zbl0499.60059MR712714
  15. V. V. Yurinskiĭ, Averaging of symmetric diffusion in a random medium, Sibirsk. Mat. Zh. 27 (1986), 167-180, 215 Zbl0614.60051MR867870
  16. V. V. Yurinskiĭ, Homogenization error estimates for random elliptic operators, Mathematics of random media (Blacksburg, VA, 1989) 27 (1991), 285-291, Amer. Math. Soc., Providence, RI Zbl0729.60060MR1117252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.