Waves in Honeycomb Structures

Charles L. Fefferman[1]; Michael I. Weinstein[2]

  • [1] Department of Mathematics Princeton University Princeton, NJ 08540 USA
  • [2] Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 USA

Journées Équations aux dérivées partielles (2012)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, V . In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of H V = - Δ + V and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution e - i H V t ψ 0 , for data ψ 0 , which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion of the effective large time evolution for the nonlinear Schrödinger - Gross Pitaevskii equation for small amplitude initial conditions, ψ 0 . The effective dynamics are governed by a nonlinear Dirac system.

How to cite

top

Fefferman, Charles L., and Weinstein, Michael I.. "Waves in Honeycomb Structures." Journées Équations aux dérivées partielles (2012): 1-12. <http://eudml.org/doc/275480>.

@article{Fefferman2012,
abstract = {We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, $V$. In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of $H_V=-\Delta +V$ and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution $e^\{-iH_Vt\}\psi _0$, for data $\psi _0$, which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion of the effective large time evolution for the nonlinear Schrödinger - Gross Pitaevskii equation for small amplitude initial conditions, $\psi _0$. The effective dynamics are governed by a nonlinear Dirac system.},
affiliation = {Department of Mathematics Princeton University Princeton, NJ 08540 USA; Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 USA},
author = {Fefferman, Charles L., Weinstein, Michael I.},
journal = {Journées Équations aux dérivées partielles},
keywords = {Periodic structure; Dispersion relation; Dirac point; Dirac equations; Conical point; Graphene; Nonlinear Schrödinger / Gross Pitaevskii equation},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Waves in Honeycomb Structures},
url = {http://eudml.org/doc/275480},
year = {2012},
}

TY - JOUR
AU - Fefferman, Charles L.
AU - Weinstein, Michael I.
TI - Waves in Honeycomb Structures
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, $V$. In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of $H_V=-\Delta +V$ and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution $e^{-iH_Vt}\psi _0$, for data $\psi _0$, which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion of the effective large time evolution for the nonlinear Schrödinger - Gross Pitaevskii equation for small amplitude initial conditions, $\psi _0$. The effective dynamics are governed by a nonlinear Dirac system.
LA - eng
KW - Periodic structure; Dispersion relation; Dirac point; Dirac equations; Conical point; Graphene; Nonlinear Schrödinger / Gross Pitaevskii equation
UR - http://eudml.org/doc/275480
ER -

References

top
  1. M. Ablowitz, C. Curtis, and Y. Zhu. On tight-binding approximations in optical lattices. Stud. Appl. Math, 129(4):362—388, 2012. Zbl1297.35212MR2993124
  2. M.J. Ablowitz and Y. Zhu. Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math., 72(240–260), 2012. Zbl1258.41012MR2888342
  3. O. Bahat-Treidel, O. Peleg, and M. Segev. Symmetry breaking in honeycomb photonic lattices. Optics Letters, 33(2251–2253), 2008. 
  4. M.V. Berry and M.R. Jeffrey. Conical Diffraction: Hamilton’s diabolical point at the heart of crystal optics. Progress in Optics. 2007. 
  5. L. Erdös, B. Schlein, and H.T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 167:515–614, 2007. Zbl1123.35066MR2276262
  6. C.L. Fefferman and M.I. Weinstein. Dynamics of wave packets in honeycomb structures and two-dimensional Dirac equations. submitted, http://arxiv.org/abs/1212.6072. Zbl1292.35195
  7. C.L. Fefferman and M.I. Weinstein. Honeycomb lattice potentials and Dirac points. J. Amer. Math. Soc., 25:1169–1220, 2012. Zbl1316.35214MR2947949
  8. V. V. Grushin. Multiparameter perturbation theory of Fredholm operators applied to Bloch functions. Mathematical Notes, 86(6):767–774, 2009. Zbl1197.47025MR2643450
  9. F.D.M. Haldane and S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100:013904, 2008. 
  10. R. A. Indik and A. C. Newell. Conical refraction and nonlinearity. Optics Express, 14(22):10614–10620, 2006. 
  11. P. Kuchment and O. Post. On the spectra of carbon nano-structures. Comm. Math. Phys., 275:805–826, 2007. Zbl1145.81032MR2336365
  12. J.V. Maloney and A.C. Newell. Nonlinear Optics. Westview Press, 2003. Zbl1054.78001
  13. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81:109–162, 2009. 
  14. K. S. Novoselov. Nobel lecture: Graphene: Materials in the flatland. Reviews of Modern Physics, 837–849, 2011. 
  15. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D.N. Christodoulides. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 98:103901, 2007. 
  16. L. P. Pitaevskii and S. Stringari. Bose Einstein Condensation. Oxford University Press, 2003. Zbl1110.82002MR2012737
  17. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, S. Nolte, M. Segev, and A. Szameit. Photonic Floquet topological insulators. http://arxiv.org/abs/1212.3146. 
  18. P.R. Wallace. The band theory of graphite. Phys. Rev., 71:622, 1947. Zbl0033.14304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.