Variational inequalities for singular integral operators

Albert Mas[1]

  • [1] Departamento de Matemáticas, Universidad del País Vasco – Euskal Herriko Unibertsitatea, 48080 Leioa, Bizkaia (Spain)

Journées Équations aux dérivées partielles (2012)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
In these notes we survey some new results concerning the ρ -variation for singular integral operators defined on Lipschitz graphs. Moreover, we investigate the relationship between variational inequalities for singular integrals on AD regular measures and geometric properties of these measures. An overview of the main results and applications, as well as some ideas of the proofs, are given.

How to cite

top

Mas, Albert. "Variational inequalities for singular integral operators." Journées Équations aux dérivées partielles (2012): 1-14. <http://eudml.org/doc/275481>.

@article{Mas2012,
abstract = {In these notes we survey some new results concerning the $\rho $-variation for singular integral operators defined on Lipschitz graphs. Moreover, we investigate the relationship between variational inequalities for singular integrals on AD regular measures and geometric properties of these measures. An overview of the main results and applications, as well as some ideas of the proofs, are given.},
affiliation = {Departamento de Matemáticas, Universidad del País Vasco – Euskal Herriko Unibertsitatea, 48080 Leioa, Bizkaia (Spain)},
author = {Mas, Albert},
journal = {Journées Équations aux dérivées partielles},
keywords = {$\rho $-variation; singular integral operators; uniform rectifiability},
language = {eng},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Variational inequalities for singular integral operators},
url = {http://eudml.org/doc/275481},
year = {2012},
}

TY - JOUR
AU - Mas, Albert
TI - Variational inequalities for singular integral operators
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 14
AB - In these notes we survey some new results concerning the $\rho $-variation for singular integral operators defined on Lipschitz graphs. Moreover, we investigate the relationship between variational inequalities for singular integrals on AD regular measures and geometric properties of these measures. An overview of the main results and applications, as well as some ideas of the proofs, are given.
LA - eng
KW - $\rho $-variation; singular integral operators; uniform rectifiability
UR - http://eudml.org/doc/275481
ER -

References

top
  1. J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), pp. 5–45. Zbl0705.28008MR1019960
  2. J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J. 105 (2000), pp. 59–83. Zbl1013.42008MR1788042
  3. J. Campbell, R. L. Jones, K. Reinhold, and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc. 35 (2003), pp. 2115–2137. Zbl1022.42012MR1953540
  4. G. David and S. Semmes, Singular integrals and rectifiable sets in R n : au-delà des graphes lipschitziens, Astérisque No. 193 (1991). Zbl0743.49018MR1113517
  5. G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, 38, American Mathematical Society, Providence, RI (1993). Zbl0832.42008MR1251061
  6. H. Farag, The Riesz kernels do not give rise to higher-dimensional analogues of the Menger-Melnikov curvature, Pub. Mat. 43 (1999), no. 1, pp. 251–260. Zbl0936.42010MR1697524
  7. T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel Journal of Math. 141 (2004), pp. 125–144. Zbl1072.42011MR2063029
  8. P. Huovinen, Singular integrals and rectifiability of measures in the plane, dissertation, University of Jyväskylä, Jyväskylä (1997). Ann. Acad. Sci. Fenn. Math. Diss. No. 109 (1997), 63 pp. Zbl0883.28007MR1428746
  9. R. L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory and Dynam. Sys. 18 (1998), pp. 889–936. Zbl0924.28009MR1645330
  10. R. L. Jones, A. Seeger, and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), pp. 6711–6742. Zbl1159.42013MR2434308
  11. P. W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., 1384, Springer, Berlin, 1989, pp. 24–68. Zbl0675.30029MR1013815
  12. M. Lacey and E. Terwilleger, A Wiener-Wintner theorem for the Hilbert transform, Ark. Mat. 46 (2008), 2, pp. 315–336. Zbl1214.42003MR2430729
  13. J. C. Léger, Menger curvature and rectifiability, Ann. of Math., 149 (1999), pp. 831–869. Zbl0966.28003MR1709304
  14. D. Lépingle, La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 36 (1976), pp. 295–316. Zbl0325.60047MR420837
  15. A. Mas, Variation for singular integrals on Lipschitz graphs: L p and endpoint estimates, to appear in Trans. Amer. Math. Soc. (2012). Zbl1281.42014MR3091264
  16. A. Mas and X. Tolsa, Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs, to appear in Proc. London Math. Soc. (2012). Zbl1271.42024MR2948789
  17. A. Mas and X. Tolsa, Variation for the Riesz transform and uniform rectifiability, to appear in J. Eur. Math. Soc. (2012). MR2948789
  18. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge (1995). Zbl0819.28004MR1333890
  19. P. Mattila, Cauchy singular integrals and rectifiability of measures in the plane, Adv. Math. 115 (1995), pp. 1–34. Zbl0842.30029MR1351323
  20. P. Mattila and M. S. Melnikov, Existence and weak-type inequalities for Cauchy integrals of general measures on rectifiable curves and sets, Proc. Amer. Math. Soc. 120 (1994), no. 1, pp. 143–149. Zbl0838.30036MR1160305
  21. P. Mattila, M. S. Melnikov and J. Verdera, The Cauchy integral, analytic capacity, and uniform rectifiability, Ann. of Math. (2) 144 (1996), pp. 127–136. Zbl0897.42007MR1405945
  22. P. Mattila and D. Preiss, Rectifiable measures in n and existence of principal values for singular integrals, J. London Math. Soc. (2) 52 (1995), no. 3, pp. 482–496. Zbl0880.28002MR1363815
  23. P. Mattila and J. Verdera Convergence of singular integrals with general measures, J. Eur. Math. Soc. 11 (2009), pp. 257–271. Zbl1163.42005MR2486933
  24. F. Nazarov, X. Tolsa, and A. Volberg. Private communication. In preparation. 
  25. R. Oberlin, A. Seeger, T. Tao, C. Thiele, and J. Wright A variation norm Carleson theorem, J. Eur. Math. Soc. 14 (2012), 2, pp. 421–464. Zbl1246.42016MR2881301
  26. H. Pajot, Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, Lecture Notes in Math. 1799, Springer (2002). Zbl1043.28002MR1952175
  27. A. Ruiz de Villa and X. Tolsa, Non existence of principal values of signed Riesz transforms of non integer dimension, Indiana Univ. Math. J. 59 (2010), no. 1, pp. 115–130. Zbl1200.28004MR2666475
  28. X. Tolsa. Cotlar’s inequality without the doubling condition and existence of principal values for the Cauchy integral of measures, J. Reine Angew. Math. 502 (1998), pp. 199–235. Zbl0912.42009MR1647575
  29. X. Tolsa. Principal values for the Cauchy integral and rectifiability, Proc. Amer. Math. Soc. 128(7) (2000), pp. 2111–2119. Zbl0944.30022MR1654076
  30. X. Tolsa. A proof of the weak ( 1 , 1 ) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Pub. Mat. 45(1) (2001), pp. 163–174. Zbl0980.42012MR1829582
  31. X. Tolsa, Principal values for Riesz transforms and rectifiability, J. Funct. Anal., vol. 254(7) (2008), pp. 1811–1863. Zbl1153.28003MR2397876
  32. X. Tolsa, Uniform rectifiability, Calderón-Zygmund operators with odd kernel, and quasiorthogonality, Proc. London Math. Soc. 98(2) (2009), pp. 393–426. Zbl1194.28005MR2481953
  33. M. Vihtilä, The boundedness of Riesz s -transforms of measures in n , Proc. Amer. Math. Soc. 124 (1996), no. 12, pp 3739–3804. Zbl0876.28008MR1343727
  34. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58 (2003). American Math. Soc., Providence RI. Zbl1106.90001MR1964483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.