Ergodic Dilation of a Quantum Dynamical System
- [1] Universitá degli Studi di Roma “Tor Vergata”, Dipartimento di Ingegneria Elettronica, via del Politecnico, 00133 Roma, Italia
Confluentes Mathematici (2014)
- Volume: 6, Issue: 1, page 77-91
- ISSN: 1793-7434
Access Full Article
topAbstract
topHow to cite
topPandiscia, Carlo. "Ergodic Dilation of a Quantum Dynamical System." Confluentes Mathematici 6.1 (2014): 77-91. <http://eudml.org/doc/275495>.
@article{Pandiscia2014,
abstract = {Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.},
affiliation = {Universitá degli Studi di Roma “Tor Vergata”, Dipartimento di Ingegneria Elettronica, via del Politecnico, 00133 Roma, Italia},
author = {Pandiscia, Carlo},
journal = {Confluentes Mathematici},
keywords = {Quantum Markov process; completely positive maps; Nagy dilation; ergodic state; quantum Markov process},
language = {eng},
number = {1},
pages = {77-91},
publisher = {Institut Camille Jordan},
title = {Ergodic Dilation of a Quantum Dynamical System},
url = {http://eudml.org/doc/275495},
volume = {6},
year = {2014},
}
TY - JOUR
AU - Pandiscia, Carlo
TI - Ergodic Dilation of a Quantum Dynamical System
JO - Confluentes Mathematici
PY - 2014
PB - Institut Camille Jordan
VL - 6
IS - 1
SP - 77
EP - 91
AB - Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.
LA - eng
KW - Quantum Markov process; completely positive maps; Nagy dilation; ergodic state; quantum Markov process
UR - http://eudml.org/doc/275495
ER -
References
top- L. Accardi and C. Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Ana., 45:245–273, 1982. Zbl0483.46043MR647075
- W. Arveson. Non commutative dynamics and Eo-semigroups, Monograph in mathematics, Springer-Verlag, 2003. Zbl1032.46001
- B.V. Bath and K.R. Parthasarathy. Markov dilations of nonconservative dynamical semigroups and quantum boundary theory, Ann. I.H.P. sec. B, 31(4):601–651, 1995. Zbl0832.46060MR1355610
- D. E. Evans and J. T. Lewis. Dilations of dynamical semi-groups, Comm. Math. Phys., 50(3):219–227, 1976. Zbl0402.46039MR468878
- A. Frigerio, V.Gorini, A. Kossakowski and M. Verri. Quantum detailed balance and KMS condition, Commun. Math. Phys., 57:97–110, 1977. Zbl0374.46060MR468989
- B. Kümmerer. Markov dilations on W*-algebras, J. Funct. Ana., 63:139–177, 1985. Zbl0601.46062MR803091
- W.A. Majewski. On the relationship between the reversibility of dynamics and balance conditions, Ann. I. H. P. sec. A, 39(1):45–54, 1983. Zbl0519.46068MR715131
- P.S. Muhly and B. Solel. Quantum Markov Processes (correspondeces and dilations), Int. J. Math., 13(8):863–906, 2002. Zbl1057.46050MR1928802
- B.Sz. Nagy and C. Foiaş. Harmonic analysis of operators on Hilbert space, Regional Conf. Ser. Math., 19, 1971. Zbl0201.45003MR275190
- C. Niculescu, A. Ströh and L.Zsidó. Noncommutative extensions of classical and multiple recurrence theorems, J. Oper. Th., 50:3–52, 2002. Zbl1036.46053MR2015017
- V.I. Paulsen. Completely bounded maps and dilations, Pitman Res. Notes Math. 146, Longman Scientific & Technical, 1986. Zbl0614.47006MR868472
- M. Skeide. Dilation theory and continuous tensor product systems of Hilbert modules, in: PQ-QP: Quantum Probability and White Noise Analysis XV, World Scientific, 2003. Zbl1050.81043MR2010609
- F. Stinesring. Positive functions on C* algebras, Proc. Amer. Math. Soc., 6:211–216, 1955. Zbl0064.36703MR69403
- L. Zsido. Personal communication, 2008.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.