Immersed boundary methods for the numerical simulation of incompressible aerodynamics and fluid-structure interactions
Nicolas James[1]; Emmanuel Maitre[2]; Iraj Mortazavi[3]
- [1] LMA Université de Poitiers UMR CNRS 7348 Téléport 2 - BP 30179 Bd Marie et Pierre Curie 86962 Chasseneuil FRANCE
- [2] LJK Université de Grenoble UMR CNRS 5224 Tour IRMA, BP 53 51, rue des Mathématiques 38041 Grenoble Cedex 9 FRANCE
- [3] IMB Université de Bordeaux UMR CNRS 5251 MC 2 INRIA Bordeaux Sud-Ouest 351, cours de la libération 33405 Talence FRANCE
Annales mathématiques Blaise Pascal (2013)
- Volume: 20, Issue: 1, page 139-173
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topJames, Nicolas, Maitre, Emmanuel, and Mortazavi, Iraj. "Immersed boundary methods for the numerical simulation of incompressible aerodynamics and fluid-structure interactions." Annales mathématiques Blaise Pascal 20.1 (2013): 139-173. <http://eudml.org/doc/275509>.
@article{James2013,
abstract = {In this work three branches of Immersed Boundary Methods (IBM) are described and validated for incompressible aerodynamics and fluid-structure interactions. These three approaches are: Cut Cell method, Vortex-Penalization method and Forcing method. The first two techniques are validated for external bluff-body flow around a circular obstacle. The last one is used to predict the deformations of an elastic membrane immersed in a fluid. The paper confirms the ability of this family of numerical schemes for accurate and robust simulation of incompressible flows.},
affiliation = {LMA Université de Poitiers UMR CNRS 7348 Téléport 2 - BP 30179 Bd Marie et Pierre Curie 86962 Chasseneuil FRANCE; LJK Université de Grenoble UMR CNRS 5224 Tour IRMA, BP 53 51, rue des Mathématiques 38041 Grenoble Cedex 9 FRANCE; IMB Université de Bordeaux UMR CNRS 5251 MC 2 INRIA Bordeaux Sud-Ouest 351, cours de la libération 33405 Talence FRANCE},
author = {James, Nicolas, Maitre, Emmanuel, Mortazavi, Iraj},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Immersed boundary method; Momentum forcing method; Vortex penalization method; Cut-cell method; Incompressible viscous flows; Complex geometry; immersed boundary method; momentum forcing method; vortex penalization method; cut-cell method; incompressible viscous flows; complex geometry},
language = {eng},
month = {1},
number = {1},
pages = {139-173},
publisher = {Annales mathématiques Blaise Pascal},
title = {Immersed boundary methods for the numerical simulation of incompressible aerodynamics and fluid-structure interactions},
url = {http://eudml.org/doc/275509},
volume = {20},
year = {2013},
}
TY - JOUR
AU - James, Nicolas
AU - Maitre, Emmanuel
AU - Mortazavi, Iraj
TI - Immersed boundary methods for the numerical simulation of incompressible aerodynamics and fluid-structure interactions
JO - Annales mathématiques Blaise Pascal
DA - 2013/1//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 1
SP - 139
EP - 173
AB - In this work three branches of Immersed Boundary Methods (IBM) are described and validated for incompressible aerodynamics and fluid-structure interactions. These three approaches are: Cut Cell method, Vortex-Penalization method and Forcing method. The first two techniques are validated for external bluff-body flow around a circular obstacle. The last one is used to predict the deformations of an elastic membrane immersed in a fluid. The paper confirms the ability of this family of numerical schemes for accurate and robust simulation of incompressible flows.
LA - eng
KW - Immersed boundary method; Momentum forcing method; Vortex penalization method; Cut-cell method; Incompressible viscous flows; Complex geometry; immersed boundary method; momentum forcing method; vortex penalization method; cut-cell method; incompressible viscous flows; complex geometry
UR - http://eudml.org/doc/275509
ER -
References
top- P. Angot, C. -H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math. 81 (1999), 497-520 Zbl0921.76168MR1675200
- J. T. Beale, J. Strain, Locally corrected semi-Lagrangian methods for Stokes flow with moving elastic interfaces, J. Comp. Phys. 227 (2008), 3896-3920 Zbl1146.76044MR2403872
- D. Boffi, L. Gastaldi, L. Heltai, Numerical stability of the finite element immersed boundary method, M3AS 17 (2007), 1479-1505 Zbl1186.76661MR2359913
- D. Boffia, L. Gastaldi, L. Heltai, Stability results and algorithmic strategies for the finite element approach to the immersed boundary method, preprint available on http://www.ing.unibs.it/~gastaldi/paper.html, Proceeding of the Sixth European Conference on Numerical Mathematics and Advanced Applications (2005), 557-566 Zbl05165537MR2303686
- S. Bohnet, R. Ananthakrishnan, A. Mogilner, J.-J. Meister, A. Verkhovsky, Weak force stalls protrusion at the leading edge of the lamellipodium, Biophys. J. 90 (2006), 1810-1820
- F. Bouchon, T. Dubois, N. James, A second-order cut-cell method for the numerical simulation of 2D flows past obstacles, Computers and Fluids 65 (2012), 80-91 MR2966539
- D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut, Computational modeling of solid tumor growth: the avascular stage, SIAM Journal on Scientific Computing 32 (2010), 2321-2344 Zbl1214.92039MR2678103
- D. Bresch, Th. Colin, E. Grenier, B. Ribba, O. Saut, O. Singh, C. Verdier, Quelques méthodes de paramètre d’ordre avec applications à la modélisation de processus cancéreux, ESAIM: Proceedings 18 (2007), 163-180 Zbl05213264MR2404904
- Ch. -H. Bruneau, I. Mortazavi, P. Gilliéron, Passive control around the two-dimensional square back Ahmed body using porous devices, J. Fluids Eng. 130 (2008)
- Y.C. Chang, T.Y. Hou, B. Merriman, S. Osher, A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, J. Comp. Phys. 124 (1996), 449-464 Zbl0847.76048MR1383769
- Y. Cheny, O. Botella, The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties, J. Comp. phys. 229 (2010), 1043-1076 Zbl1329.76252MR2576238
- A.J. Chorin, Vortex sheet approximation of boundary layers, J. Comput. Phys. 27 (1978) Zbl0387.76040
- M.-H. Chung, Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape, Computers and Fluids 35 (2006), 607-623 Zbl1160.76369
- M. Coquerelle, J. Allard, G. -H. Cottet, M. -P. Cani, A Vortex Method for Bi-phasic Fluids Interacting with Rigid Bodies, Arxiv preprint math, LMC-IMAG (2006)
- M. Coquerelle, G. -H. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys. 227 (2008) Zbl1146.76038MR2463201
- R. Cortez, C.S. Peskin, J.M. Stockie, D. Varela, Parametric resonance in immersed elastic boundaries, SIAM Journal on Applied Mathematics 65 (2004), 494-520 Zbl1074.74024MR2123067
- G. -H. Cottet, F. Gallizio, A. Magni, I. Mortazavi, A vortex immersed boundary method for bluff body flows, ASME Summer Meeting, Montreal FEDSM-ICNMM2010-30787 (2010)
- G. -H. Cottet, P. Koumoutsakos, Vortex Methods: Theory and Practice, (2000) Zbl1140.76002MR1755095
- G.-H. Cottet, E. Maitre, A level-set formulation of immersed boundary methods for fluid-structure interaction problems, C. R. Math. 338 (2004), 581-586 Zbl1101.74028MR2057034
- G.-H. Cottet, E. Maitre, A level set method for fluid-structure interactions with immersed surfaces, Math. Models Meth. Appl. Sci. 16 (2006), 415-438 Zbl1088.74050MR2238758
- G.-H. Cottet, E. Maitre, T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM-Math. Model. Numer. Anal. 42 (2008), 471-492 Zbl1163.76040MR2423795
- E. Creusé, A. Giovannini, I. Mortazavi, Vortex simulation of active control strategies for transitional backward-facing step flows, Computers & Fluids 38 (2009) Zbl1242.76226MR2645733
- E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161 (2000), 35-60 Zbl0972.76073MR1762073
- B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, J. Comp. Phys. 208 (2005), 75-105 Zbl1115.76386MR2144693
- F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 12 (1965), 2182-2189 Zbl1180.76043
- J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulation of flow in complex geometries, J. Comput. Phys. 171 (2001), 132-150 Zbl1057.76039MR1843643
- L. Lee, R.J. Leveque, An immersed interface method for incompresible Navier-Stokes equations, SIAM J. Sci. Comp. 25 (2003), 832-856 Zbl1163.65322MR2046114
- R. J. LeVeque, Z. Li, The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM J. Numer. Anal. 31 (1994), 1019-1044 Zbl0811.65083MR1286215
- R. J. LeVeque, Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (1997), 709-735 Zbl0879.76061MR1443639
- N. Matsunaga, Y. Yamamoto, Superconvergence of the shortley-weller approximation for dirichlet problems, J. Comp. Appl. Math. 116 (2000), 263-273 Zbl0952.65082MR1750921
- T. Milcent, Formulation eulerienne du couplage fluide structure, analyse mathématique et applications en biomécanique, (2008), Thèse de l’Université de Grenoble
- R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. V. Loebbecke, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys. 227 (2008), 4825-4852 Zbl05276051MR2414837
- R. Mittal, G. Iaccarino, Immersed Boundary Methods, Annual Review of Fluid Mechanics 37 (2005), 239-261 Zbl1117.76049MR2115343
- J. Mohd-Yusof, Combined immersed-boundary/B-Spline methods for simulations of flow in complex geometries, (1997), 317-327, NASA Ames Research Center/Stanford University
- I. Mortazavi, A. Giovannini, The simulation of vortex dynamics downstream of a plate separator using a vortex-finite element method, Int. J. Fluid Dynamics 5 (2001)
- F. Muldoon, S. Acharya, A divergence-free interpolation scheme for the immersed boundary method, Int. J. Numer. Method Fluid 56 (2008), 1845-1884 Zbl1262.76077MR2397813
- F. Noca, D. Shiels, D. Jeon, A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives, Journal of Fluids and Structures 13 (1999)
- D. Olz, C. Schmeiser, V. Small, Modelling of the Actin-cytoskeleton in symmetric lamellipodial fragments, Cell Adhesion and Migration 2 (2008), 117-126
- S. Osher, R. P. Fedkiw, Level set methods and Dynamic Implicit Surfaces, (2003), Springer Zbl1026.76001MR1939127
- S. Osher, J. A. Sethian, Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys. 79 (1988), 12-49 Zbl0659.65132MR965860
- C. S. Peskin, The fluid dynamics of heart valves: experimental, theoretical, and computational methods, Ann. Rev. Fluid Mech. 14 (1982), 235-259 Zbl0488.76129MR642539
- C. S. Peskin, The immersed boundary method, Acta Numerica 11 (2002), 1-39 Zbl1123.74309MR2009378
- C.S. Peskin, Numerical Analysis of Blood Flow in the Heart, J. Comp. Phys. 25 (1977), 220-252 Zbl0403.76100MR490027
- S. Peskin, B.F. Printz, Improved volume conservation in the computation of flows with immersed boundaries, J. Comput. Phys. 105 (1993), 33-46 Zbl0762.92011MR1210858
- P. Ploumhans, G. S. Winckelmans, Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, Journal of Computational Physics 165 (2000) Zbl1006.76068MR1807293
- E. M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comput. Phys. 123 (1996), 450-465 Zbl0848.76052
- J. Stockie, Analysis of Stiffness in the immersed boundary method and implications for time-stepping schemes, J. Comp. Phys. 154 (1999), 41-64 Zbl0953.76070
- P. G. Tucker, Z. Pan, A cartesian cut-cell method for incompressible viscous flow, Appl. Math. Model. 24 (2000), 591-606 Zbl1056.76059
- M. De Tullio, A. Cristallo, E. Balaras, G. Pascazio, P. De Palma, G. Iaccarino, M. Napolitano, R. Verzicco, Recent advances in the immersed boundary method, ECCOMAS CFD (2006), WesselingP.P.
- T. Ye, R. Mittal, H. S. Udaykumar, W. Shyy., Numerical Simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comp. Phys. 156 (1999), 209-240 Zbl0957.76043
- N. Zhang, Z. C. Zheng, An Improved Direct-Forcing Immersed Boundary Method for Finite Difference Applications, J. Comput. Phys. 221 (2007), 250-268 Zbl1108.76051MR2290571
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.