Realizable Galois module classes over the group ring for non abelian extensions

Nigel P. Byott[1]; Bouchaïb Sodaïgui[2]

  • [1] College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
  • [2] Département de Mathématiques, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 1, page 303-371
  • ISSN: 0373-0956

Abstract

top
Given an algebraic number field k and a finite group Γ , we write ( O k [ Γ ] ) for the subset of the locally free classgroup Cl ( O k [ Γ ] ) consisting of the classes of rings of integers O N in tame Galois extensions N / k with Gal ( N / k ) Γ . We determine ( O k [ Γ ] ) , and show it is a subgroup of Cl ( O k [ Γ ] ) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ = V C , where V is an elementary abelian group of order p r and C is a cyclic group of order m > 1 acting faithfully on V and making V into an irreducible 𝔽 p [ C ] -module. This extends and refines results of Byott, Greither and Sodaïgui for p = 2 in Crelle, respectively of Bruche and Sodaïgui for p > 2 in J. Number Theory, which cover only the case m = p r - 1 and determine only the image ( ) of ( O k [ Γ ] ) under extension of scalars from O k [ Γ ] to a maximal order O k [ Γ ] in k [ Γ ] . The main result here thus generalizes the calculation of ( O k [ A 4 ] ) for the alternating group A 4 of degree 4 (the case p = r = 2 ) given by Byott and Sodaïgui in Compositio.

How to cite

top

Byott, Nigel P., and Sodaïgui, Bouchaïb. "Realizable Galois module classes over the group ring for non abelian extensions." Annales de l’institut Fourier 63.1 (2013): 303-371. <http://eudml.org/doc/275530>.

@article{Byott2013,
abstract = {Given an algebraic number field $k$ and a finite group $\Gamma $, we write $\mathcal\{R\}(O_k[\Gamma ])$ for the subset of the locally free classgroup $\mathrm\{Cl\}(O_k[\Gamma ])$ consisting of the classes of rings of integers $O_N$ in tame Galois extensions $N/k$ with $\mathrm\{Gal\}(N/k) \cong \Gamma $. We determine $\mathcal\{R\}(O_k[\Gamma ])$, and show it is a subgroup of $\mathrm\{Cl\}(O_k[\Gamma ])$ by means of a description using a Stickelberger ideal and properties of some cyclic codes, when $k$ contains a root of unity of prime order $p$ and $\Gamma =V \rtimes C$, where $V$ is an elementary abelian group of order $p^r$ and $C$ is a cyclic group of order $m&gt;1$ acting faithfully on $V$ and making $V$ into an irreducible $\mathbb\{F\}_p[C]$-module. This extends and refines results of Byott, Greither and Sodaïgui for $p=2$ in Crelle, respectively of Bruche and Sodaïgui for $p&gt;2$ in J. Number Theory, which cover only the case $m=p^r-1$ and determine only the image $\mathcal\{R\}(\mathcal\{M\})$ of $\mathcal\{R\}(O_k[\Gamma ])$ under extension of scalars from $O_k[\Gamma ]$ to a maximal order $\mathcal\{M\} \supset O_k[\Gamma ]$ in $k[\Gamma ]$. The main result here thus generalizes the calculation of $\mathcal\{R\}(O_k[A_4])$ for the alternating group $A_4$ of degree 4 (the case $p=r=2$) given by Byott and Sodaïgui in Compositio.},
affiliation = {College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; Département de Mathématiques, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes Cedex 9, France},
author = {Byott, Nigel P., Sodaïgui, Bouchaïb},
journal = {Annales de l’institut Fourier},
keywords = {Galois module structure; Rings of algebraic integers; Locally free classgroup; Fröhlich-Lagrange resolvent; Realizable classes; Embedding problem; Stickelberger ideal; Cyclic codes; rings of algebraic integers; locally free class group; realizable classes; embedding problem; cyclic codes},
language = {eng},
number = {1},
pages = {303-371},
publisher = {Association des Annales de l’institut Fourier},
title = {Realizable Galois module classes over the group ring for non abelian extensions},
url = {http://eudml.org/doc/275530},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Byott, Nigel P.
AU - Sodaïgui, Bouchaïb
TI - Realizable Galois module classes over the group ring for non abelian extensions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 303
EP - 371
AB - Given an algebraic number field $k$ and a finite group $\Gamma $, we write $\mathcal{R}(O_k[\Gamma ])$ for the subset of the locally free classgroup $\mathrm{Cl}(O_k[\Gamma ])$ consisting of the classes of rings of integers $O_N$ in tame Galois extensions $N/k$ with $\mathrm{Gal}(N/k) \cong \Gamma $. We determine $\mathcal{R}(O_k[\Gamma ])$, and show it is a subgroup of $\mathrm{Cl}(O_k[\Gamma ])$ by means of a description using a Stickelberger ideal and properties of some cyclic codes, when $k$ contains a root of unity of prime order $p$ and $\Gamma =V \rtimes C$, where $V$ is an elementary abelian group of order $p^r$ and $C$ is a cyclic group of order $m&gt;1$ acting faithfully on $V$ and making $V$ into an irreducible $\mathbb{F}_p[C]$-module. This extends and refines results of Byott, Greither and Sodaïgui for $p=2$ in Crelle, respectively of Bruche and Sodaïgui for $p&gt;2$ in J. Number Theory, which cover only the case $m=p^r-1$ and determine only the image $\mathcal{R}(\mathcal{M})$ of $\mathcal{R}(O_k[\Gamma ])$ under extension of scalars from $O_k[\Gamma ]$ to a maximal order $\mathcal{M} \supset O_k[\Gamma ]$ in $k[\Gamma ]$. The main result here thus generalizes the calculation of $\mathcal{R}(O_k[A_4])$ for the alternating group $A_4$ of degree 4 (the case $p=r=2$) given by Byott and Sodaïgui in Compositio.
LA - eng
KW - Galois module structure; Rings of algebraic integers; Locally free classgroup; Fröhlich-Lagrange resolvent; Realizable classes; Embedding problem; Stickelberger ideal; Cyclic codes; rings of algebraic integers; locally free class group; realizable classes; embedding problem; cyclic codes
UR - http://eudml.org/doc/275530
ER -

References

top
  1. C. Bruche, B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions, J. Number Theory 128 (2008), 954-978 Zbl1189.11051MR2400053
  2. N. P. Byott, Hopf orders and a generalization of a theorem of L.R. McCulloh, J. Algebra 177 (1995), 409-433 Zbl0838.16009MR1355208
  3. N. P. Byott, Tame realisable classes over Hopf orders, J. Algebra 201 (1998), 284-316 Zbl0911.16010MR1608722
  4. N. P. Byott, C. Greither, B. Sodaïgui, Classes réalisables d’extensions non abéliennes, J. reine angew. Math. 601 (2006), 1-27 Zbl1137.11069MR2289203
  5. N. P. Byott, B. Sodaïgui, Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring, J. Number Theory 112 (2005), 1-19 Zbl1073.11068MR2131138
  6. N. P. Byott, B. Sodaïgui, Realizable Galois module classes for tetrahedal extensions, Compositio Math. 141 (2005), 573-282 Zbl1167.11319MR2135277
  7. J. E. Carter, B. Sodaïgui, Classes de Steinitz d’extensions quaterniennes généralisées de degré 4 p r , J. London Math. Soc. 76 (2007), 331-344 Zbl1130.11064MR2363419
  8. A. Cobbe, Steinitz classes of tamely ramified Galois extensions of number fields, J. Number Theory 130 (2010), 1129-1154 Zbl1215.11108MR2607305
  9. C. W. Curtis, I. Reiner, Methods of Representation Theory, Volume II, (1994), Wiley, New York Zbl0616.20001MR892316
  10. L. P. Endo, Steinitz Classes of Tamely Ramified Galois Extensions of Algebraic Number Fields 
  11. A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. reine angew. Math. 286/287 (1976), 380-440 Zbl0385.12004MR432595
  12. A. Fröhlich, Galois module structure, A. Fröhlich (ed.) “Algebraic Number Fields (L-functions and Galois properties)” (1977), 133-191, Academic Press, London Zbl0375.12010MR447181
  13. A. Fröhlich, Galois Module Structure of Algebraic Integers, (1983), Springer, Berlin Zbl0501.12012MR717033
  14. A. Fröhlich, M. J. Taylor, Algebraic Number Theory, (1991), Cambridge University Press, Cambridge Zbl0744.11001MR1149385
  15. M. Godin, B. Sodaïgui, Realizable classes of tetrahedral extensions, J. Number Theory 98 (2003), 320-328 Zbl1028.11067MR1955420
  16. E. Hecke, Lectures on the Theory of Algebraic Numbers, 77 (1981), Springer, New York Zbl0504.12001MR638719
  17. L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, A. Fröhlich (ed.), “Algebraic Number Fields (L-functions and Galois properties)” (1977), Academic Press Zbl0389.12005MR457403
  18. L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102-134 Zbl0508.12008MR701039
  19. L. R. McCulloh, Galois module structure of abelian extensions, J. reine angew. Math. 375/376 (1987), 259-306 Zbl0619.12008MR882300
  20. I. Reiner, Maximal Orders, (1975), Academic Press, London Zbl1024.16008MR1972204
  21. S. Roman, Coding and Information Theory, 134 (1992), Springer, New York Zbl0752.94001MR1168212
  22. F. Sbeity, B. Sodaïgui, Classes réalisables d’extesnions métacycliques de degré l m , J. Number Theory 130 (2010), 1818-1834 Zbl1200.11085MR2651157
  23. B. Sodaïgui, Classes réalisables par des extensions métacycliques non abéliennes et éléments de Stickelberger, J. Number Theory 65 (1997), 87-95 Zbl0873.11061MR1458204
  24. B. Sodaïgui, “Galois Module Structure” des extensions quaternioniennes de degré 8, J. Algebra 213 (1999), 549-556 Zbl0989.11060MR1673468
  25. B. Sodaïgui, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8, J. Algebra 223 (2000), 367-378 Zbl0953.11036MR1738267
  26. B. Sodaïgui, Relative Galois module structure of octahedral extensions, J. Algebra 312 (2007), 590-601 Zbl1170.11040MR2333174
  27. M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), 41-79 Zbl0469.12003MR608528
  28. L. C. Washington, Introduction to Cyclotomic Fields, 83 (1996), Springer, New York Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.