Realizable Galois module classes over the group ring for non abelian extensions
Nigel P. Byott[1]; Bouchaïb Sodaïgui[2]
- [1] College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
- [2] Département de Mathématiques, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes Cedex 9, France
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 1, page 303-371
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topByott, Nigel P., and Sodaïgui, Bouchaïb. "Realizable Galois module classes over the group ring for non abelian extensions." Annales de l’institut Fourier 63.1 (2013): 303-371. <http://eudml.org/doc/275530>.
@article{Byott2013,
abstract = {Given an algebraic number field $k$ and a finite group $\Gamma $, we write $\mathcal\{R\}(O_k[\Gamma ])$ for the subset of the locally free classgroup $\mathrm\{Cl\}(O_k[\Gamma ])$ consisting of the classes of rings of integers $O_N$ in tame Galois extensions $N/k$ with $\mathrm\{Gal\}(N/k) \cong \Gamma $. We determine $\mathcal\{R\}(O_k[\Gamma ])$, and show it is a subgroup of $\mathrm\{Cl\}(O_k[\Gamma ])$ by means of a description using a Stickelberger ideal and properties of some cyclic codes, when $k$ contains a root of unity of prime order $p$ and $\Gamma =V \rtimes C$, where $V$ is an elementary abelian group of order $p^r$ and $C$ is a cyclic group of order $m>1$ acting faithfully on $V$ and making $V$ into an irreducible $\mathbb\{F\}_p[C]$-module. This extends and refines results of Byott, Greither and Sodaïgui for $p=2$ in Crelle, respectively of Bruche and Sodaïgui for $p>2$ in J. Number Theory, which cover only the case $m=p^r-1$ and determine only the image $\mathcal\{R\}(\mathcal\{M\})$ of $\mathcal\{R\}(O_k[\Gamma ])$ under extension of scalars from $O_k[\Gamma ]$ to a maximal order $\mathcal\{M\} \supset O_k[\Gamma ]$ in $k[\Gamma ]$. The main result here thus generalizes the calculation of $\mathcal\{R\}(O_k[A_4])$ for the alternating group $A_4$ of degree 4 (the case $p=r=2$) given by Byott and Sodaïgui in Compositio.},
affiliation = {College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; Département de Mathématiques, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes Cedex 9, France},
author = {Byott, Nigel P., Sodaïgui, Bouchaïb},
journal = {Annales de l’institut Fourier},
keywords = {Galois module structure; Rings of algebraic integers; Locally free classgroup; Fröhlich-Lagrange resolvent; Realizable classes; Embedding problem; Stickelberger ideal; Cyclic codes; rings of algebraic integers; locally free class group; realizable classes; embedding problem; cyclic codes},
language = {eng},
number = {1},
pages = {303-371},
publisher = {Association des Annales de l’institut Fourier},
title = {Realizable Galois module classes over the group ring for non abelian extensions},
url = {http://eudml.org/doc/275530},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Byott, Nigel P.
AU - Sodaïgui, Bouchaïb
TI - Realizable Galois module classes over the group ring for non abelian extensions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 303
EP - 371
AB - Given an algebraic number field $k$ and a finite group $\Gamma $, we write $\mathcal{R}(O_k[\Gamma ])$ for the subset of the locally free classgroup $\mathrm{Cl}(O_k[\Gamma ])$ consisting of the classes of rings of integers $O_N$ in tame Galois extensions $N/k$ with $\mathrm{Gal}(N/k) \cong \Gamma $. We determine $\mathcal{R}(O_k[\Gamma ])$, and show it is a subgroup of $\mathrm{Cl}(O_k[\Gamma ])$ by means of a description using a Stickelberger ideal and properties of some cyclic codes, when $k$ contains a root of unity of prime order $p$ and $\Gamma =V \rtimes C$, where $V$ is an elementary abelian group of order $p^r$ and $C$ is a cyclic group of order $m>1$ acting faithfully on $V$ and making $V$ into an irreducible $\mathbb{F}_p[C]$-module. This extends and refines results of Byott, Greither and Sodaïgui for $p=2$ in Crelle, respectively of Bruche and Sodaïgui for $p>2$ in J. Number Theory, which cover only the case $m=p^r-1$ and determine only the image $\mathcal{R}(\mathcal{M})$ of $\mathcal{R}(O_k[\Gamma ])$ under extension of scalars from $O_k[\Gamma ]$ to a maximal order $\mathcal{M} \supset O_k[\Gamma ]$ in $k[\Gamma ]$. The main result here thus generalizes the calculation of $\mathcal{R}(O_k[A_4])$ for the alternating group $A_4$ of degree 4 (the case $p=r=2$) given by Byott and Sodaïgui in Compositio.
LA - eng
KW - Galois module structure; Rings of algebraic integers; Locally free classgroup; Fröhlich-Lagrange resolvent; Realizable classes; Embedding problem; Stickelberger ideal; Cyclic codes; rings of algebraic integers; locally free class group; realizable classes; embedding problem; cyclic codes
UR - http://eudml.org/doc/275530
ER -
References
top- C. Bruche, B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions, J. Number Theory 128 (2008), 954-978 Zbl1189.11051MR2400053
- N. P. Byott, Hopf orders and a generalization of a theorem of L.R. McCulloh, J. Algebra 177 (1995), 409-433 Zbl0838.16009MR1355208
- N. P. Byott, Tame realisable classes over Hopf orders, J. Algebra 201 (1998), 284-316 Zbl0911.16010MR1608722
- N. P. Byott, C. Greither, B. Sodaïgui, Classes réalisables d’extensions non abéliennes, J. reine angew. Math. 601 (2006), 1-27 Zbl1137.11069MR2289203
- N. P. Byott, B. Sodaïgui, Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring, J. Number Theory 112 (2005), 1-19 Zbl1073.11068MR2131138
- N. P. Byott, B. Sodaïgui, Realizable Galois module classes for tetrahedal extensions, Compositio Math. 141 (2005), 573-282 Zbl1167.11319MR2135277
- J. E. Carter, B. Sodaïgui, Classes de Steinitz d’extensions quaterniennes généralisées de degré , J. London Math. Soc. 76 (2007), 331-344 Zbl1130.11064MR2363419
- A. Cobbe, Steinitz classes of tamely ramified Galois extensions of number fields, J. Number Theory 130 (2010), 1129-1154 Zbl1215.11108MR2607305
- C. W. Curtis, I. Reiner, Methods of Representation Theory, Volume II, (1994), Wiley, New York Zbl0616.20001MR892316
- L. P. Endo, Steinitz Classes of Tamely Ramified Galois Extensions of Algebraic Number Fields
- A. Fröhlich, Arithmetic and Galois module structure for tame extensions, J. reine angew. Math. 286/287 (1976), 380-440 Zbl0385.12004MR432595
- A. Fröhlich, Galois module structure, A. Fröhlich (ed.) “Algebraic Number Fields (L-functions and Galois properties)” (1977), 133-191, Academic Press, London Zbl0375.12010MR447181
- A. Fröhlich, Galois Module Structure of Algebraic Integers, (1983), Springer, Berlin Zbl0501.12012MR717033
- A. Fröhlich, M. J. Taylor, Algebraic Number Theory, (1991), Cambridge University Press, Cambridge Zbl0744.11001MR1149385
- M. Godin, B. Sodaïgui, Realizable classes of tetrahedral extensions, J. Number Theory 98 (2003), 320-328 Zbl1028.11067MR1955420
- E. Hecke, Lectures on the Theory of Algebraic Numbers, 77 (1981), Springer, New York Zbl0504.12001MR638719
- L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, A. Fröhlich (ed.), “Algebraic Number Fields (L-functions and Galois properties)” (1977), Academic Press Zbl0389.12005MR457403
- L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102-134 Zbl0508.12008MR701039
- L. R. McCulloh, Galois module structure of abelian extensions, J. reine angew. Math. 375/376 (1987), 259-306 Zbl0619.12008MR882300
- I. Reiner, Maximal Orders, (1975), Academic Press, London Zbl1024.16008MR1972204
- S. Roman, Coding and Information Theory, 134 (1992), Springer, New York Zbl0752.94001MR1168212
- F. Sbeity, B. Sodaïgui, Classes réalisables d’extesnions métacycliques de degré , J. Number Theory 130 (2010), 1818-1834 Zbl1200.11085MR2651157
- B. Sodaïgui, Classes réalisables par des extensions métacycliques non abéliennes et éléments de Stickelberger, J. Number Theory 65 (1997), 87-95 Zbl0873.11061MR1458204
- B. Sodaïgui, “Galois Module Structure” des extensions quaternioniennes de degré 8, J. Algebra 213 (1999), 549-556 Zbl0989.11060MR1673468
- B. Sodaïgui, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8, J. Algebra 223 (2000), 367-378 Zbl0953.11036MR1738267
- B. Sodaïgui, Relative Galois module structure of octahedral extensions, J. Algebra 312 (2007), 590-601 Zbl1170.11040MR2333174
- M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), 41-79 Zbl0469.12003MR608528
- L. C. Washington, Introduction to Cyclotomic Fields, 83 (1996), Springer, New York Zbl0966.11047MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.