Mass endomorphism, surgery and perturbations
Bernd Ammann[1]; Mattias Dahl[2]; Andreas Hermann[3]; Emmanuel Humbert[3]
- [1] Fakultät für Mathematik Universität Regensburg 93040 Regensburg Germany
- [2] Institutionen för Matematik Kungliga Tekniska Högskolan 100 44 Stockholm Sweden
- [3] Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, 37200 Tours, France
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 467-487
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAmmann, Bernd, et al. "Mass endomorphism, surgery and perturbations." Annales de l’institut Fourier 64.2 (2014): 467-487. <http://eudml.org/doc/275531>.
@article{Ammann2014,
abstract = {We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.},
affiliation = {Fakultät für Mathematik Universität Regensburg 93040 Regensburg Germany; Institutionen för Matematik Kungliga Tekniska Högskolan 100 44 Stockholm Sweden; Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, 37200 Tours, France; Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, 37200 Tours, France},
author = {Ammann, Bernd, Dahl, Mattias, Hermann, Andreas, Humbert, Emmanuel},
journal = {Annales de l’institut Fourier},
keywords = {Dirac operator; mass endomorphism; surgery; compact Riemannian spin manifolds; Dirac operators; mass endomorphisms},
language = {eng},
number = {2},
pages = {467-487},
publisher = {Association des Annales de l’institut Fourier},
title = {Mass endomorphism, surgery and perturbations},
url = {http://eudml.org/doc/275531},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Ammann, Bernd
AU - Dahl, Mattias
AU - Hermann, Andreas
AU - Humbert, Emmanuel
TI - Mass endomorphism, surgery and perturbations
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 467
EP - 487
AB - We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.
LA - eng
KW - Dirac operator; mass endomorphism; surgery; compact Riemannian spin manifolds; Dirac operators; mass endomorphisms
UR - http://eudml.org/doc/275531
ER -
References
top- B. Ammann, A spin-conformal lower bound of the first positive Dirac eigenvalue, Diff. Geom. Appl. 18 (2003), 21-32 Zbl1030.58020MR1951070
- B. Ammann, The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Comm. Anal. Geom. 17 (2009), 429-479 Zbl1185.58013MR2550205
- B. Ammann, A variational problem in conformal spin geometry, (Habilitationsschrift, Universität Hamburg, 2003) Zbl1030.58020
- B. Ammann, M. Dahl, E. Humbert, Surgery and harmonic spinors, Adv. Math. 220 (2009), 523-539 Zbl1159.53021MR2466425
- B. Ammann, M. Dahl, E. Humbert, Harmonic spinors and local deformations of the metric, Comm. Anal. Geom. 18 (2011), 927-936 Zbl1257.53077MR2875865
- B. Ammann, J.-F. Grosjean, E. Humbert, B. Morel, A spinorial analogue of Aubin’s inequality, Math. Z. 260 (2008), 127-151 Zbl1145.53039MR2413347
- B. Ammann, E. Humbert, B. Morel, Mass endomorphism and spinorial Yamabe type problems, Comm. Anal. Geom. 14 (2006), 163-182 Zbl1126.53024MR2230574
- C. Bär, M. Dahl, Surgery and the Spectrum of the Dirac Operator, J. reine angew. Math. 552 (2002), 53-76 Zbl1017.58019MR1940432
- R. Beig, N. Ó Murchadha, Trapped surfaces due to concentration of gravitational radiation, Phys. Rev. Lett. 66 (1991), 2421-2424 Zbl0968.83504MR1104859
- J.-P. Bourguignon, P. Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys. 144 (1992), 581-599 Zbl0755.53009MR1158762
- T. Friedrich, Dirac Operators in Riemannian Geometry, 25 (2000), AMS, Providence, Rhode Island Zbl0949.58032MR1777332
- A. Hermann, Generic metrics and the mass endomorphism on spin 3-manifolds, Ann. Glob. Anal. Geom. 37 (2010), 163-171 Zbl1185.53014MR2578263
- A. Hermann, Dirac eigenspinors for generic metrics, (2012)
- O Hijazi, Première valeur propre de l’opérateur de Dirac et nombre de Yamabe, C. R. Acad. Sci. Paris, Série I 313 (1991), 865-868 Zbl0738.53030MR1138566
- T. Kato, Perturbation theory for linear operators, 132 (1966), Springer-Verlag Zbl0531.47014MR203473
- H. B. Lawson, M.-L. Michelsohn, Spin geometry, (1989), Princeton University Press, Princeton Zbl0688.57001MR1031992
- J. M. Lee, T. H. Parker, The Yamabe problem, Bull. Am. Math. Soc., New Ser. 17 (1987), 37-91 Zbl0633.53062MR888880
- S. Maier, Generic metrics and connections on spin- and spin-manifolds, Comm. Math. Phys. 188 (1997), 407-437 Zbl0899.53036MR1471821
- R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479-495 Zbl0576.53028MR788292
- S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), 511-540 Zbl0784.53029MR1189863
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.