On the uniqueness of elliptic K3 surfaces with maximal singular fibre

Matthias Schütt[1]; Andreas Schweizer[2]

  • [1] Institut für Algebraische Geometrie Leibniz Universität Hannover Welfengarten 1 30167 Hannover Germany
  • [2] Department of Mathematics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 305-701 South Korea

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 689-713
  • ISSN: 0373-0956

Abstract

top
We explicitly determine the elliptic K 3 surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from 2 , for each of the two possible maximal fibre types, I 19 and I 14 * , the surface is unique. In characteristic 2 the maximal fibre types are I 18 and I 13 * , and there exist two (resp. one) one-parameter families of such surfaces.

How to cite

top

Schütt, Matthias, and Schweizer, Andreas. "On the uniqueness of elliptic K3 surfaces with maximal singular fibre." Annales de l’institut Fourier 63.2 (2013): 689-713. <http://eudml.org/doc/275532>.

@article{Schütt2013,
abstract = {We explicitly determine the elliptic $K3$ surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from $2$, for each of the two possible maximal fibre types, $I_\{19\}$ and $I^*_\{14\}$, the surface is unique. In characteristic $2$ the maximal fibre types are $I_\{18\}$ and $I^*_\{13\}$, and there exist two (resp. one) one-parameter families of such surfaces.},
affiliation = {Institut für Algebraische Geometrie Leibniz Universität Hannover Welfengarten 1 30167 Hannover Germany; Department of Mathematics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 305-701 South Korea},
author = {Schütt, Matthias, Schweizer, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {elliptic surface; $K3$ surface; maximal singular fibre; wild ramification; elliptic surfaces; surfaces; maximal singular fiber},
language = {eng},
number = {2},
pages = {689-713},
publisher = {Association des Annales de l’institut Fourier},
title = {On the uniqueness of elliptic K3 surfaces with maximal singular fibre},
url = {http://eudml.org/doc/275532},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Schütt, Matthias
AU - Schweizer, Andreas
TI - On the uniqueness of elliptic K3 surfaces with maximal singular fibre
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 689
EP - 713
AB - We explicitly determine the elliptic $K3$ surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from $2$, for each of the two possible maximal fibre types, $I_{19}$ and $I^*_{14}$, the surface is unique. In characteristic $2$ the maximal fibre types are $I_{18}$ and $I^*_{13}$, and there exist two (resp. one) one-parameter families of such surfaces.
LA - eng
KW - elliptic surface; $K3$ surface; maximal singular fibre; wild ramification; elliptic surfaces; surfaces; maximal singular fiber
UR - http://eudml.org/doc/275532
ER -

References

top
  1. M. Artin, Supersingular K 3 surfaces, Ann. Sci. École Norm. Sup. (4) 7 (1974), 543-568 Zbl0322.14014MR371899
  2. M. Artin, P. Swinnerton-Dyer, The Shafarevich-Tate conjecture for pencils of elliptic curves on K 3 surfaces, Invent. Math. 20 (1973), 249-266 Zbl0289.14003MR417182
  3. F. Beukers, H. Montanus, Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials 352 (2008), 33-51, Cambridge Univ. Press, Cambridge Zbl1266.11078MR2428514
  4. F. R. Cossec, I. V. Dolgachev, Enriques surfaces, 76 (1989), Birkhäuser Zbl0665.14017MR986969
  5. I. Dolgachev, S. Kondō, A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. (2003), 1-23 Zbl1061.14031MR1935564
  6. N. D. Elkies, Mordell-Weil lattices in characteristic 2. I. Construction and first properties, Int. Math. Res. Not. (1994), 343-361 Zbl0813.52017MR1289579
  7. E.-U. Gekeler, Local and global ramification properties of elliptic curves in characteristics two and three, Algorithmic Algebra and Number Theory (1998), 49-64, MatzatB. H.B. H. Zbl1099.11507MR1672097
  8. M. Hall Jr., The Diophantine equation x 3 - y 2 = k , 173-198 
  9. K. Kodaira, On compact analytic surfaces II, III, Ann. of Math. (2) 77 (1963), 563-626 Zbl0118.15802MR184257
  10. R. Livné, Motivic Orthogonal Two-dimensional Representations of Gal ( ¯ / ) , Israel J. Math. 92 (1995), 149-156 Zbl0847.11035MR1357749
  11. R. Miranda, U. Persson, Configurations of I n Fibers on Elliptic K3 surfaces, Math. Z. 201 (1989), 339-361 Zbl0694.14019MR999732
  12. R. Miyamoto, J. Top, Reduction of Elliptic Curves in Equal Characteristic, Canad. Math. Bull. 48 (2005), 428-444 Zbl1100.11018MR2154085
  13. J. Pesenti, L. Szpiro, Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math. 120 (2000), 83-117 Zbl1021.11021MR1738213
  14. I. I. Pjateckiĭ-Šapiro, I. R Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv. 5 (1972), 547-588 Zbl0253.14006
  15. A. Schweizer, Extremal elliptic surfaces in characteristic 2 and 3 , Manuscripta Math. 102 (2000), 505-521 Zbl0989.14013MR1785328
  16. M. Schütt, The maximal singular fibres of elliptic K3 surfaces, Arch. Math. (Basel) 87 (2006), 309-319 Zbl1111.14034MR2263477
  17. M. Schütt, CM newforms with rational coefficients, Ramanujan J. 19 (2009), 187-205 Zbl1226.11057MR2511671
  18. M. Schütt, A. Schweizer, Davenport-Stothers inequalities and elliptic surfaces in positive characteristic, Quarterly J. Math. 59 (2008), 499-522 Zbl1154.14028MR2461271
  19. M. Schütt, J. Top, Arithmetic of the [19,1,1,1,1,1] fibration, Comm. Math. Univ. St. Pauli 55 (2006), 9-16 Zbl1125.14022MR2251996
  20. T. Shioda, On the Mordell-Weil lattices, Comm. Math. Univ. St. Pauli 39 (1990), 211-240 Zbl0725.14017MR1081832
  21. T. Shioda, The elliptic K3 surfaces with a maximal singular fibre, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 461-466 Zbl1048.14017MR2023754
  22. T. Shioda, Elliptic surfaces and Davenport-Stothers triples, Comment. Math. Univ. St. Pauli 54 (2005), 49-68 Zbl1100.14031MR2153955
  23. T. Shioda, H. Inose, On Singular K 3 Surfaces, Baily W. L. Jr., Shioda, T. (eds.) (1977), 119-136, Iwanami Shoten, Tokyo Zbl0374.14006MR441982
  24. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, (1994), Springer GTM, Berlin-Heidelberg-New York Zbl0911.14015MR1312368
  25. W. W. Stothers, Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2) 32 (1981), 349-370 Zbl0466.12011MR625647
  26. J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (1965), 93-110, Harper & Row Zbl0213.22804MR225778
  27. J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, Modular functions of one variable IV 476 (1975), 33-52 Zbl1214.14020MR393039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.