Exponents in Archimedean Arthur packets
Nicolas Bergeron[1]; Laurent Clozel[2]
- [1] Université Pierre et Marie Curie Institut de Mathématiques de Jussieu Unité Mixte de Recherche 7586 du CNRS 4, place Jussieu 75252 Paris Cedex 05 (France)
 - [2] Université Paris Sud Unité Mixte de Recherche 8628 du CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay cedex (France)
 
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 1, page 113-154
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topBergeron, Nicolas, and Clozel, Laurent. "Exponents in Archimedean Arthur packets." Annales de l’institut Fourier 63.1 (2013): 113-154. <http://eudml.org/doc/275535>.
@article{Bergeron2013,
	abstract = {Generalizing the proof – by Hecht and Schmid – of Osborne’s conjecture we prove an Archimedean (and weaker) version of a theorem of Colette Moeglin. The result we obtain is a precise Archimedean version of the general principle – stated by the second author – according to which a local Arthur packet contains the corresponding local $L$-packet and representations which are more tempered.},
	affiliation = {Université Pierre et Marie Curie Institut de Mathématiques de Jussieu Unité Mixte de Recherche 7586 du CNRS 4, place Jussieu 75252 Paris Cedex 05 (France); Université Paris Sud Unité Mixte de Recherche 8628 du CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
	author = {Bergeron, Nicolas, Clozel, Laurent},
	journal = {Annales de l’institut Fourier},
	keywords = {Représentations unitaires; exposants; conjecture d’Osborne; paquets d’Arthur; unitary representations; exponents; Osborne conjecture; Arthur packet},
	language = {eng},
	number = {1},
	pages = {113-154},
	publisher = {Association des Annales de l’institut Fourier},
	title = {Exponents in Archimedean Arthur packets},
	url = {http://eudml.org/doc/275535},
	volume = {63},
	year = {2013},
}
TY  - JOUR
AU  - Bergeron, Nicolas
AU  - Clozel, Laurent
TI  - Exponents in Archimedean Arthur packets
JO  - Annales de l’institut Fourier
PY  - 2013
PB  - Association des Annales de l’institut Fourier
VL  - 63
IS  - 1
SP  - 113
EP  - 154
AB  - Generalizing the proof – by Hecht and Schmid – of Osborne’s conjecture we prove an Archimedean (and weaker) version of a theorem of Colette Moeglin. The result we obtain is a precise Archimedean version of the general principle – stated by the second author – according to which a local Arthur packet contains the corresponding local $L$-packet and representations which are more tempered.
LA  - eng
KW  - Représentations unitaires; exposants; conjecture d’Osborne; paquets d’Arthur; unitary representations; exponents; Osborne conjecture; Arthur packet
UR  - http://eudml.org/doc/275535
ER  - 
References
top- James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties 4 (2005), 1-263, Amer. Math. Soc., Providence, RI Zbl1152.11021MR2192011
 - Ehud Moshe Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 (2003), 207-252 Zbl1034.22010MR1999922
 - Joseph N. Bernstein, -invariant distributions on and the classification of unitary representations of (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) 1041 (1984), 50-102, Springer, Berlin Zbl0541.22009MR748505
 - Abderrazak Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal. 70 (1987), 1-79 Zbl0622.22009MR870753
 - William Casselman, M. Scott Osborne, The -cohomology of representations with an infinitesimal character, Compositio Math. 31 (1975), 219-227 Zbl0343.17006MR396704
 - G. Chenevier, L. Clozel, Corps de nombres peu ramifiés et formes automorphes autoduales, J. Amer. Math. Soc. 22 (2009), 467-519 Zbl1206.11066MR2476781
 - Laurent Clozel, The ABS principle: consequences for , On certain -functions 13 (2011), 99-115, Amer. Math. Soc., Providence, RI Zbl1243.22016MR2767512
 - Michel Duflo, Représentations irréductibles des groupes semi-simples complexes, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75) (1975), 26-88. Lecture Notes in Math., Vol. 497, Springer, Berlin Zbl0315.22008MR399353
 - A. I. Fomin, N. N. Šapovalov, A certain property of the characters of irreducible representations of real semisimple Lie groups, Funkcional. Anal. i Priložen. 8 (1974), 87-88 Zbl0302.22017MR367115
 - Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508 Zbl0199.46402MR180631
 - Henryk Hecht, Wilfried Schmid, Characters, asymptotics and -homology of Harish-Chandra modules, Acta Math. (1983), 49-151 Zbl0523.22013MR716371
 - Takeshi Hirai, The characters of some induced representations of semi-simple Lie groups, J. Math. Kyoto Univ. 8 (1968), 313-363 Zbl0185.21503MR238994
 - H. Jacquet, R. P. Langlands, Automorphic forms on , (1970), Springer-Verlag, Berlin Zbl0236.12010MR401654
 - Anthony W. Knapp, Representation theory of semisimple groups, (2001), Princeton University Press, Princeton, NJ Zbl0993.22001MR1880691
 - Anthony W. Knapp, David A. Vogan, Cohomological induction and unitary representations, 45 (1995), Princeton University Press, Princeton, NJ Zbl0863.22011MR1330919
 - Robert E. Kottwitz, Diana Shelstad, Foundations of twisted endoscopy, Astérisque (1999) Zbl0958.22013MR1687096
 - J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu 3 (2004), 473-530 Zbl1061.11025MR2094449
 - R. P. Langlands, D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219-271 Zbl0644.22005MR909227
 - Colette Mœglin, Comparaison des paramètres de Langlands et des exposants à l’intérieur d’un paquet d’Arthur, J. Lie Theory 19 (2009), 797-840 Zbl1189.22010MR2599005
 - David A. Vogan, The unitary dual of over an Archimedean field, Invent. Math. 83 (1986), 449-505 Zbl0598.22008MR827363
 - J.-L. Waldspurger, Le groupe tordu, sur un corps -adique. I, Duke Math. J. 137 (2007), 185-234 Zbl1113.22013MR2309147
 - J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire, Manuscripta Math. 133 (2010), 41-82 Zbl1207.22011MR2672539
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.