Exponents in Archimedean Arthur packets

Nicolas Bergeron[1]; Laurent Clozel[2]

  • [1] Université Pierre et Marie Curie Institut de Mathématiques de Jussieu Unité Mixte de Recherche 7586 du CNRS 4, place Jussieu 75252 Paris Cedex 05 (France)
  • [2] Université Paris Sud Unité Mixte de Recherche 8628 du CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay cedex (France)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 1, page 113-154
  • ISSN: 0373-0956

Abstract

top
Generalizing the proof – by Hecht and Schmid – of Osborne’s conjecture we prove an Archimedean (and weaker) version of a theorem of Colette Moeglin. The result we obtain is a precise Archimedean version of the general principle – stated by the second author – according to which a local Arthur packet contains the corresponding local L -packet and representations which are more tempered.

How to cite

top

Bergeron, Nicolas, and Clozel, Laurent. "Exponents in Archimedean Arthur packets." Annales de l’institut Fourier 63.1 (2013): 113-154. <http://eudml.org/doc/275535>.

@article{Bergeron2013,
abstract = {Generalizing the proof – by Hecht and Schmid – of Osborne’s conjecture we prove an Archimedean (and weaker) version of a theorem of Colette Moeglin. The result we obtain is a precise Archimedean version of the general principle – stated by the second author – according to which a local Arthur packet contains the corresponding local $L$-packet and representations which are more tempered.},
affiliation = {Université Pierre et Marie Curie Institut de Mathématiques de Jussieu Unité Mixte de Recherche 7586 du CNRS 4, place Jussieu 75252 Paris Cedex 05 (France); Université Paris Sud Unité Mixte de Recherche 8628 du CNRS Laboratoire de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
author = {Bergeron, Nicolas, Clozel, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Représentations unitaires; exposants; conjecture d’Osborne; paquets d’Arthur; unitary representations; exponents; Osborne conjecture; Arthur packet},
language = {eng},
number = {1},
pages = {113-154},
publisher = {Association des Annales de l’institut Fourier},
title = {Exponents in Archimedean Arthur packets},
url = {http://eudml.org/doc/275535},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Bergeron, Nicolas
AU - Clozel, Laurent
TI - Exponents in Archimedean Arthur packets
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 113
EP - 154
AB - Generalizing the proof – by Hecht and Schmid – of Osborne’s conjecture we prove an Archimedean (and weaker) version of a theorem of Colette Moeglin. The result we obtain is a precise Archimedean version of the general principle – stated by the second author – according to which a local Arthur packet contains the corresponding local $L$-packet and representations which are more tempered.
LA - eng
KW - Représentations unitaires; exposants; conjecture d’Osborne; paquets d’Arthur; unitary representations; exponents; Osborne conjecture; Arthur packet
UR - http://eudml.org/doc/275535
ER -

References

top
  1. James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties 4 (2005), 1-263, Amer. Math. Soc., Providence, RI Zbl1152.11021MR2192011
  2. Ehud Moshe Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 (2003), 207-252 Zbl1034.22010MR1999922
  3. Joseph N. Bernstein, P -invariant distributions on GL ( N ) and the classification of unitary representations of GL ( N ) (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) 1041 (1984), 50-102, Springer, Berlin Zbl0541.22009MR748505
  4. Abderrazak Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal. 70 (1987), 1-79 Zbl0622.22009MR870753
  5. William Casselman, M. Scott Osborne, The 𝔫 -cohomology of representations with an infinitesimal character, Compositio Math. 31 (1975), 219-227 Zbl0343.17006MR396704
  6. G. Chenevier, L. Clozel, Corps de nombres peu ramifiés et formes automorphes autoduales, J. Amer. Math. Soc. 22 (2009), 467-519 Zbl1206.11066MR2476781
  7. Laurent Clozel, The ABS principle: consequences for L 2 ( G / H ) , On certain -functions 13 (2011), 99-115, Amer. Math. Soc., Providence, RI Zbl1243.22016MR2767512
  8. Michel Duflo, Représentations irréductibles des groupes semi-simples complexes, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75) (1975), 26-88. Lecture Notes in Math., Vol. 497, Springer, Berlin Zbl0315.22008MR399353
  9. A. I. Fomin, N. N. Šapovalov, A certain property of the characters of irreducible representations of real semisimple Lie groups, Funkcional. Anal. i Priložen. 8 (1974), 87-88 Zbl0302.22017MR367115
  10. Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508 Zbl0199.46402MR180631
  11. Henryk Hecht, Wilfried Schmid, Characters, asymptotics and 𝔫 -homology of Harish-Chandra modules, Acta Math. (1983), 49-151 Zbl0523.22013MR716371
  12. Takeshi Hirai, The characters of some induced representations of semi-simple Lie groups, J. Math. Kyoto Univ. 8 (1968), 313-363 Zbl0185.21503MR238994
  13. H. Jacquet, R. P. Langlands, Automorphic forms on GL ( 2 ) , (1970), Springer-Verlag, Berlin Zbl0236.12010MR401654
  14. Anthony W. Knapp, Representation theory of semisimple groups, (2001), Princeton University Press, Princeton, NJ Zbl0993.22001MR1880691
  15. Anthony W. Knapp, David A. Vogan, Cohomological induction and unitary representations, 45 (1995), Princeton University Press, Princeton, NJ Zbl0863.22011MR1330919
  16. Robert E. Kottwitz, Diana Shelstad, Foundations of twisted endoscopy, Astérisque (1999) Zbl0958.22013MR1687096
  17. J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu 3 (2004), 473-530 Zbl1061.11025MR2094449
  18. R. P. Langlands, D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219-271 Zbl0644.22005MR909227
  19. Colette Mœglin, Comparaison des paramètres de Langlands et des exposants à l’intérieur d’un paquet d’Arthur, J. Lie Theory 19 (2009), 797-840 Zbl1189.22010MR2599005
  20. David A. Vogan, The unitary dual of GL ( n ) over an Archimedean field, Invent. Math. 83 (1986), 449-505 Zbl0598.22008MR827363
  21. J.-L. Waldspurger, Le groupe GL N tordu, sur un corps p -adique. I, Duke Math. J. 137 (2007), 185-234 Zbl1113.22013MR2309147
  22. J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire, Manuscripta Math. 133 (2010), 41-82 Zbl1207.22011MR2672539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.