Some controllability results for the relativistic Vlasov-Maxwell system

Daniel Han-Kwan[1]

  • [1] DMA Ecole Normale SupŽrieure 45 rue d’Ulm 75005 Paris France

Journées Équations aux dérivées partielles (2012)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.

How to cite

top

Han-Kwan, Daniel. "Some controllability results for the relativistic Vlasov-Maxwell system." Journées Équations aux dérivées partielles (2012): 1-12. <http://eudml.org/doc/275538>.

@article{Han2012,
abstract = {The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.},
affiliation = {DMA Ecole Normale SupŽrieure 45 rue d’Ulm 75005 Paris France},
author = {Han-Kwan, Daniel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Vlasov-Maxwell equations; controllability; geometric control condition},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Some controllability results for the relativistic Vlasov-Maxwell system},
url = {http://eudml.org/doc/275538},
year = {2012},
}

TY - JOUR
AU - Han-Kwan, Daniel
TI - Some controllability results for the relativistic Vlasov-Maxwell system
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.
LA - eng
KW - Vlasov-Maxwell equations; controllability; geometric control condition
UR - http://eudml.org/doc/275538
ER -

References

top
  1. K. Asano, On local solutions of the initial value problem for the Vlasov-Maxwell equation, Comm. Math. Phys. 106 (1986), 551-568 Zbl0631.76090MR860309
  2. K. Asano, S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, Patterns and waves 18 (1986), 369-383, North-Holland, Amsterdam Zbl0623.35059MR882384
  3. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065 Zbl0786.93009MR1178650
  4. N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 749-752 Zbl0906.93008MR1483711
  5. J.-M. Coron, Control and nonlinearity, 136 (2007), American Mathematical Society, Providence, RI Zbl1140.93002MR2302744
  6. P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), 533-558 Zbl0619.35088MR870991
  7. S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), 1375-1401 Zbl1219.93011MR2679646
  8. O. Glass, On the controllability of the Vlasov-Poisson system, J. Differential Equations 195 (2003), 332-379 Zbl1109.93007MR2016816
  9. O. Glass, LA MÉTHODE DU RETOUR EN CONTRoLABILITÉ ET SES APPLICATIONS EN MÉCANIQUE DES FLUIDES, Séminaire Bourbaki (2010) Zbl1302.93045
  10. O. Glass, D. Han-Kwan, On the controllability of the relativistic Vlasov-Maxwell system, Preprint (2012) Zbl06402810MR2902122
  11. O. Glass, D. Han-Kwan, On the controllability of the Vlasov-Poisson system in the presence of external force fields, J. Differential Equations 252 (2012), 5453-5491 Zbl1238.35160MR2902122
  12. R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), 59-90 Zbl0595.35072MR816621
  13. K. D. Phung, Contrôle et stabilisation d’ondes électromagnétiques, ESAIM Control Optim. Calc. Var. 5 (2000), 87-137 (electronic) Zbl0942.93002MR1744608
  14. J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79-86 Zbl0281.35012MR361461
  15. J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), 403-421 Zbl0597.35109MR840744
  16. S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math. 37 (1984), 457-462 Zbl0592.45010MR745326
  17. S. Wollman, Local existence and uniqueness theory of the Vlasov-Maxwell system, J. Math. Anal. Appl. 127 (1987), 103-121 Zbl0645.35013MR904213

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.