Some controllability results for the relativistic Vlasov-Maxwell system
- [1] DMA Ecole Normale Suprieure 45 rue d’Ulm 75005 Paris France
Journées Équations aux dérivées partielles (2012)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topHan-Kwan, Daniel. "Some controllability results for the relativistic Vlasov-Maxwell system." Journées Équations aux dérivées partielles (2012): 1-12. <http://eudml.org/doc/275538>.
@article{Han2012,
abstract = {The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.},
affiliation = {DMA Ecole Normale Suprieure 45 rue d’Ulm 75005 Paris France},
author = {Han-Kwan, Daniel},
journal = {Journées Équations aux dérivées partielles},
keywords = {Vlasov-Maxwell equations; controllability; geometric control condition},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Some controllability results for the relativistic Vlasov-Maxwell system},
url = {http://eudml.org/doc/275538},
year = {2012},
}
TY - JOUR
AU - Han-Kwan, Daniel
TI - Some controllability results for the relativistic Vlasov-Maxwell system
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.
LA - eng
KW - Vlasov-Maxwell equations; controllability; geometric control condition
UR - http://eudml.org/doc/275538
ER -
References
top- K. Asano, On local solutions of the initial value problem for the Vlasov-Maxwell equation, Comm. Math. Phys. 106 (1986), 551-568 Zbl0631.76090MR860309
- K. Asano, S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, Patterns and waves 18 (1986), 369-383, North-Holland, Amsterdam Zbl0623.35059MR882384
- C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065 Zbl0786.93009MR1178650
- N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 749-752 Zbl0906.93008MR1483711
- J.-M. Coron, Control and nonlinearity, 136 (2007), American Mathematical Society, Providence, RI Zbl1140.93002MR2302744
- P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), 533-558 Zbl0619.35088MR870991
- S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), 1375-1401 Zbl1219.93011MR2679646
- O. Glass, On the controllability of the Vlasov-Poisson system, J. Differential Equations 195 (2003), 332-379 Zbl1109.93007MR2016816
- O. Glass, LA MÉTHODE DU RETOUR EN CONTRoLABILITÉ ET SES APPLICATIONS EN MÉCANIQUE DES FLUIDES, Séminaire Bourbaki (2010) Zbl1302.93045
- O. Glass, D. Han-Kwan, On the controllability of the relativistic Vlasov-Maxwell system, Preprint (2012) Zbl06402810MR2902122
- O. Glass, D. Han-Kwan, On the controllability of the Vlasov-Poisson system in the presence of external force fields, J. Differential Equations 252 (2012), 5453-5491 Zbl1238.35160MR2902122
- R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), 59-90 Zbl0595.35072MR816621
- K. D. Phung, Contrôle et stabilisation d’ondes électromagnétiques, ESAIM Control Optim. Calc. Var. 5 (2000), 87-137 (electronic) Zbl0942.93002MR1744608
- J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79-86 Zbl0281.35012MR361461
- J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys. 104 (1986), 403-421 Zbl0597.35109MR840744
- S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Comm. Pure Appl. Math. 37 (1984), 457-462 Zbl0592.45010MR745326
- S. Wollman, Local existence and uniqueness theory of the Vlasov-Maxwell system, J. Math. Anal. Appl. 127 (1987), 103-121 Zbl0645.35013MR904213
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.