The new properties of the theta functions
- [1] Ul. Marszalkowska 1 m 80 00-624 Warszawa Poland
Annales mathématiques Blaise Pascal (2013)
- Volume: 20, Issue: 2, page 391-398
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topCzekalski, Stefan. "The new properties of the theta functions." Annales mathématiques Blaise Pascal 20.2 (2013): 391-398. <http://eudml.org/doc/275550>.
@article{Czekalski2013,
abstract = {It is shown, that the function\begin\{align*\} H(x) &= \sum \limits \_\{k=-\infty \}^\infty e^\{-k^\{2\}x\}\\ \multicolumn\{2\}\{l\}\{\text\{satisfies the relation\}\}\\ H(x) &= \sum \limits \_\{n=0\}^\infty \{(2\pi )^\{2n\}\over (2n)!\}H^\{(n)\}(x). \end\{align*\}},
affiliation = {Ul. Marszalkowska 1 m 80 00-624 Warszawa Poland},
author = {Czekalski, Stefan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {theta functions; series},
language = {eng},
month = {7},
number = {2},
pages = {391-398},
publisher = {Annales mathématiques Blaise Pascal},
title = {The new properties of the theta functions},
url = {http://eudml.org/doc/275550},
volume = {20},
year = {2013},
}
TY - JOUR
AU - Czekalski, Stefan
TI - The new properties of the theta functions
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 391
EP - 398
AB - It is shown, that the function\begin{align*} H(x) &= \sum \limits _{k=-\infty }^\infty e^{-k^{2}x}\\ \multicolumn{2}{l}{\text{satisfies the relation}}\\ H(x) &= \sum \limits _{n=0}^\infty {(2\pi )^{2n}\over (2n)!}H^{(n)}(x). \end{align*}
LA - eng
KW - theta functions; series
UR - http://eudml.org/doc/275550
ER -
References
top- R. Bellman, A Brief Introduction to Theta Functions, (1961), Hall, Rinehart and Winston, New York Zbl0098.28301MR125252
- A. Krazer, Lehrbuch der Theta - Funktionen, (1971), Chelsea, New York Zbl0212.42901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.