The new properties of the theta functions

Stefan Czekalski[1]

  • [1] Ul. Marszalkowska 1 m 80 00-624 Warszawa Poland

Annales mathématiques Blaise Pascal (2013)

  • Volume: 20, Issue: 2, page 391-398
  • ISSN: 1259-1734

Abstract

top
It is shown, that the function H ( x ) = k = - e - k 2 x satisfies the relation H ( x ) = n = 0 ( 2 π ) 2 n ( 2 n ) ! H ( n ) ( x ) .

How to cite

top

Czekalski, Stefan. "The new properties of the theta functions." Annales mathématiques Blaise Pascal 20.2 (2013): 391-398. <http://eudml.org/doc/275550>.

@article{Czekalski2013,
abstract = {It is shown, that the function\begin\{align*\} H(x) &= \sum \limits \_\{k=-\infty \}^\infty e^\{-k^\{2\}x\}\\ \multicolumn\{2\}\{l\}\{\text\{satisfies the relation\}\}\\ H(x) &= \sum \limits \_\{n=0\}^\infty \{(2\pi )^\{2n\}\over (2n)!\}H^\{(n)\}(x). \end\{align*\}},
affiliation = {Ul. Marszalkowska 1 m 80 00-624 Warszawa Poland},
author = {Czekalski, Stefan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {theta functions; series},
language = {eng},
month = {7},
number = {2},
pages = {391-398},
publisher = {Annales mathématiques Blaise Pascal},
title = {The new properties of the theta functions},
url = {http://eudml.org/doc/275550},
volume = {20},
year = {2013},
}

TY - JOUR
AU - Czekalski, Stefan
TI - The new properties of the theta functions
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 391
EP - 398
AB - It is shown, that the function\begin{align*} H(x) &= \sum \limits _{k=-\infty }^\infty e^{-k^{2}x}\\ \multicolumn{2}{l}{\text{satisfies the relation}}\\ H(x) &= \sum \limits _{n=0}^\infty {(2\pi )^{2n}\over (2n)!}H^{(n)}(x). \end{align*}
LA - eng
KW - theta functions; series
UR - http://eudml.org/doc/275550
ER -

References

top
  1. R. Bellman, A Brief Introduction to Theta Functions, (1961), Hall, Rinehart and Winston, New York Zbl0098.28301MR125252
  2. A. Krazer, Lehrbuch der Theta - Funktionen, (1971), Chelsea, New York Zbl0212.42901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.