The Hartree equation for infinite quantum systems

Julien Sabin[1]

  • [1] Laboratoire de Mathématiques d’Orsay UMR CNRS 8628 Université Paris-Sud 91405 Orsay, France

Journées Équations aux dérivées partielles (2014)

  • page 1-18
  • ISSN: 0752-0360

Abstract

top
We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.

How to cite

top

Sabin, Julien. "The Hartree equation for infinite quantum systems." Journées Équations aux dérivées partielles (2014): 1-18. <http://eudml.org/doc/275556>.

@article{Sabin2014,
abstract = {We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.},
affiliation = {Laboratoire de Mathématiques d’Orsay UMR CNRS 8628 Université Paris-Sud 91405 Orsay, France},
author = {Sabin, Julien},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The Hartree equation for infinite quantum systems},
url = {http://eudml.org/doc/275556},
year = {2014},
}

TY - JOUR
AU - Sabin, Julien
TI - The Hartree equation for infinite quantum systems
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.
LA - eng
UR - http://eudml.org/doc/275556
ER -

References

top
  1. C. Bardos, L. Erdős, F. Golse, N. Mauser, and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N -body problem, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 515–520. Zbl1018.81009MR1890644
  2. C. Bardos, F. Golse, A. Gottlieb, and N. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9), 82 (2003), pp. 665–683. Zbl1029.82022MR1996777
  3. N. Benedikter, M. Porta, and B. Schlein, Mean-field evolution of fermionic systems, Comm. Math. Phys., 331 (2014), pp. 1087–1131. Zbl1304.82061MR3248060
  4. J. Bennett, N. Bez, S. Gutierrez, and S. Lee, On the Strichartz estimates for the kinetic transport equation, arXiv preprint arXiv:1307.1600, (2013). Zbl1304.42061MR3250975
  5. A. Bove, G. Da Prato, and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., 37 (1974), pp. 183–191. Zbl0303.34046MR424069
  6. By same, On the Hartree-Fock time-dependent problem, Commun. Math. Phys., 49 (1976), pp. 25–33. MR456066
  7. E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 29 (2012), pp. 887–925. Zbl1273.82073MR2995100
  8. F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, CR Acad. Sci. Paris Sér. I Math, 322 (1996), pp. 535–540. Zbl0848.35095MR1383431
  9. J. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104. Zbl0322.35043MR411439
  10. A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., 83 (2004), pp. 1241–1273. Zbl1059.81190MR2092307
  11. R. Frank, M. Lewin, E. Lieb, and R. Seiringer, A positive density analogue of the Lieb-Thirring inequality, Duke Math. J., 162 (2012), pp. 435–495. Zbl1260.35088MR3024090
  12. R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., (2013). In press. Zbl1307.35245MR3254332
  13. R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, strichartz inequalities, and uniform sobolev estimates, arXiv preprint arXiv:1404.2817, (2014). 
  14. J. Fröhlich and A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys., 145 (2011), pp. 23–50. Zbl1269.82042MR2841931
  15. G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, 2005. 
  16. C. Hainzl, M. Lewin, and C. Sparber, Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation, Lett. Math. Phys., 72 (2005), pp. 99–113. Zbl1115.81026MR2154857
  17. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980. Zbl0922.35028MR1646048
  18. C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), pp. 329–347. Zbl0644.35012MR894584
  19. M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. I. Well-posedness theory, Comm. Math. Phys., (2013). To appear. Zbl1312.35146
  20. M. Lewin and J. Sabin, A family of monotone quantum relative entropies, Lett. Math. Phys., 104 (2014), pp. 691–705. Zbl1304.47025MR3200935
  21. M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, Analysis and PDE, 7 (2014), pp. 1339–1363. Zbl1301.35122MR3270166
  22. C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), pp. 29–201. Zbl1239.82017MR2863910
  23. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), pp. 482–492. Zbl0072.32402MR82586
  24. E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. Zbl0821.42001MR864375
  25. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), pp. 705–714. Zbl0372.35001MR512086
  26. K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), pp. 415–426. Zbl0638.35036MR891945
  27. S. Zagatti, The Cauchy problem for Hartree-Fock time-dependent equations, Ann. Inst. H. Poincaré Phys. Théor., 56 (1992), pp. 357–374. Zbl0763.35089MR1175475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.