The Hartree equation for infinite quantum systems
Julien Sabin[1]
- [1] Laboratoire de Mathématiques d’Orsay UMR CNRS 8628 Université Paris-Sud 91405 Orsay, France
Journées Équations aux dérivées partielles (2014)
- page 1-18
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topSabin, Julien. "The Hartree equation for infinite quantum systems." Journées Équations aux dérivées partielles (2014): 1-18. <http://eudml.org/doc/275556>.
@article{Sabin2014,
abstract = {We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.},
affiliation = {Laboratoire de Mathématiques d’Orsay UMR CNRS 8628 Université Paris-Sud 91405 Orsay, France},
author = {Sabin, Julien},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-18},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The Hartree equation for infinite quantum systems},
url = {http://eudml.org/doc/275556},
year = {2014},
}
TY - JOUR
AU - Sabin, Julien
TI - The Hartree equation for infinite quantum systems
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 18
AB - We review some recent results obtained with Mathieu Lewin [21] concerning the nonlinear Hartree equation for density matrices of infinite trace, describing the time evolution of quantum systems with infinitely many particles. Our main result is the asymptotic stability of a large class of translation-invariant density matrices which are stationary solutions to the Hartree equation. We also mention some related result obtained in collaboration with Rupert Frank [13] about Strichartz estimates for orthonormal systems.
LA - eng
UR - http://eudml.org/doc/275556
ER -
References
top- C. Bardos, L. Erdős, F. Golse, N. Mauser, and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum -body problem, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 515–520. Zbl1018.81009MR1890644
- C. Bardos, F. Golse, A. Gottlieb, and N. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9), 82 (2003), pp. 665–683. Zbl1029.82022MR1996777
- N. Benedikter, M. Porta, and B. Schlein, Mean-field evolution of fermionic systems, Comm. Math. Phys., 331 (2014), pp. 1087–1131. Zbl1304.82061MR3248060
- J. Bennett, N. Bez, S. Gutierrez, and S. Lee, On the Strichartz estimates for the kinetic transport equation, arXiv preprint arXiv:1307.1600, (2013). Zbl1304.42061MR3250975
- A. Bove, G. Da Prato, and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., 37 (1974), pp. 183–191. Zbl0303.34046MR424069
- By same, On the Hartree-Fock time-dependent problem, Commun. Math. Phys., 49 (1976), pp. 25–33. MR456066
- E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 29 (2012), pp. 887–925. Zbl1273.82073MR2995100
- F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, CR Acad. Sci. Paris Sér. I Math, 322 (1996), pp. 535–540. Zbl0848.35095MR1383431
- J. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104. Zbl0322.35043MR411439
- A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., 83 (2004), pp. 1241–1273. Zbl1059.81190MR2092307
- R. Frank, M. Lewin, E. Lieb, and R. Seiringer, A positive density analogue of the Lieb-Thirring inequality, Duke Math. J., 162 (2012), pp. 435–495. Zbl1260.35088MR3024090
- R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., (2013). In press. Zbl1307.35245MR3254332
- R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, strichartz inequalities, and uniform sobolev estimates, arXiv preprint arXiv:1404.2817, (2014).
- J. Fröhlich and A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys., 145 (2011), pp. 23–50. Zbl1269.82042MR2841931
- G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press, 2005.
- C. Hainzl, M. Lewin, and C. Sparber, Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation, Lett. Math. Phys., 72 (2005), pp. 99–113. Zbl1115.81026MR2154857
- M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980. Zbl0922.35028MR1646048
- C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), pp. 329–347. Zbl0644.35012MR894584
- M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. I. Well-posedness theory, Comm. Math. Phys., (2013). To appear. Zbl1312.35146
- M. Lewin and J. Sabin, A family of monotone quantum relative entropies, Lett. Math. Phys., 104 (2014), pp. 691–705. Zbl1304.47025MR3200935
- M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, Analysis and PDE, 7 (2014), pp. 1339–1363. Zbl1301.35122MR3270166
- C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), pp. 29–201. Zbl1239.82017MR2863910
- E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), pp. 482–492. Zbl0072.32402MR82586
- E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. Zbl0821.42001MR864375
- R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), pp. 705–714. Zbl0372.35001MR512086
- K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), pp. 415–426. Zbl0638.35036MR891945
- S. Zagatti, The Cauchy problem for Hartree-Fock time-dependent equations, Ann. Inst. H. Poincaré Phys. Théor., 56 (1992), pp. 357–374. Zbl0763.35089MR1175475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.