Microlocal Normal Forms for the Magnetic Laplacian

San Vũ Ngọc[1]

  • [1] IRMAR (UMR CNRS 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex, France

Journées Équations aux dérivées partielles (2014)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.

How to cite

top

Vũ Ngọc, San. "Microlocal Normal Forms for the Magnetic Laplacian." Journées Équations aux dérivées partielles (2014): 1-12. <http://eudml.org/doc/275560>.

@article{VũNgọc2014,
abstract = {We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.},
affiliation = {IRMAR (UMR CNRS 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex, France},
author = {Vũ Ngọc, San},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Microlocal Normal Forms for the Magnetic Laplacian},
url = {http://eudml.org/doc/275560},
year = {2014},
}

TY - JOUR
AU - Vũ Ngọc, San
TI - Microlocal Normal Forms for the Magnetic Laplacian
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.
LA - eng
UR - http://eudml.org/doc/275560
ER -

References

top
  1. V. I. Arnol’d, Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field, Tr. Mat. Inst. Steklova 216 (1997), 9-19 Zbl0923.58010MR1632109
  2. L. Boutet de Monvel, F. Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1-34 Zbl0281.35083MR353064
  3. L. Charles, S. Vũ Ngọc, Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J. 143 (2008), 463-511 Zbl1154.58015MR2423760
  4. C. Cheverry, Can one hear whistler waves ?, (2014) Zbl1333.35290
  5. S. Fournais, B. Helffer, Spectral methods in surface superconductivity, (2010), Birkhäuser Boston Inc., Boston, MA Zbl1256.35001MR2662319
  6. B. Helffer, Y. A. Kordyukov, Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis 535 (2011), 55-78, Amer. Math. Soc., Providence, RI Zbl1218.58017MR2560751
  7. L. Hörmander, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann. 217 (1975), 165-188 Zbl0306.35032MR377603
  8. V. Ivrii, Microlocal analysis and precise spectral asymptotics, (1998), Springer-Verlag, Berlin Zbl0906.35003MR1631419
  9. R. G. Littlejohn, A guiding center Hamiltonian: a new approach, J. Math. Phys. 20 (1979), 2445-2458 Zbl0444.70020MR553507
  10. N. Raymond, S Vũ Ngọc, Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble) (2014) Zbl1327.81207
  11. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85-130 Zbl0317.35076MR352749
  12. J. Sjöstrand, Semi-excited states in nondegenerate potential wells, Asymptotic Analysis 6 (1992), 29-43 Zbl0782.35050MR1188076
  13. A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Adv. in Math. 6 (1971), 329-346 Zbl0213.48203MR286137

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.