Microlocal Normal Forms for the Magnetic Laplacian
San Vũ Ngọc[1]
- [1] IRMAR (UMR CNRS 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex, France
Journées Équations aux dérivées partielles (2014)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topVũ Ngọc, San. "Microlocal Normal Forms for the Magnetic Laplacian." Journées Équations aux dérivées partielles (2014): 1-12. <http://eudml.org/doc/275560>.
@article{VũNgọc2014,
abstract = {We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.},
affiliation = {IRMAR (UMR CNRS 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex, France},
author = {Vũ Ngọc, San},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Microlocal Normal Forms for the Magnetic Laplacian},
url = {http://eudml.org/doc/275560},
year = {2014},
}
TY - JOUR
AU - Vũ Ngọc, San
TI - Microlocal Normal Forms for the Magnetic Laplacian
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.
LA - eng
UR - http://eudml.org/doc/275560
ER -
References
top- V. I. Arnol’d, Remarks on the Morse theory of a divergence-free vector field, the averaging method, and the motion of a charged particle in a magnetic field, Tr. Mat. Inst. Steklova 216 (1997), 9-19 Zbl0923.58010MR1632109
- L. Boutet de Monvel, F. Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1-34 Zbl0281.35083MR353064
- L. Charles, S. Vũ Ngọc, Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J. 143 (2008), 463-511 Zbl1154.58015MR2423760
- C. Cheverry, Can one hear whistler waves ?, (2014) Zbl1333.35290
- S. Fournais, B. Helffer, Spectral methods in surface superconductivity, (2010), Birkhäuser Boston Inc., Boston, MA Zbl1256.35001MR2662319
- B. Helffer, Y. A. Kordyukov, Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis 535 (2011), 55-78, Amer. Math. Soc., Providence, RI Zbl1218.58017MR2560751
- L. Hörmander, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann. 217 (1975), 165-188 Zbl0306.35032MR377603
- V. Ivrii, Microlocal analysis and precise spectral asymptotics, (1998), Springer-Verlag, Berlin Zbl0906.35003MR1631419
- R. G. Littlejohn, A guiding center Hamiltonian: a new approach, J. Math. Phys. 20 (1979), 2445-2458 Zbl0444.70020MR553507
- N. Raymond, S Vũ Ngọc, Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble) (2014) Zbl1327.81207
- J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85-130 Zbl0317.35076MR352749
- J. Sjöstrand, Semi-excited states in nondegenerate potential wells, Asymptotic Analysis 6 (1992), 29-43 Zbl0782.35050MR1188076
- A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Adv. in Math. 6 (1971), 329-346 Zbl0213.48203MR286137
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.