Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
- [1] Institut Fourier Université de Grenoble 1 100, rue des Maths, B.P. 74 38402 Saint-Martin-d’Hères, France
Journées Équations aux dérivées partielles (2012)
- page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topGallay, Thierry. "Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain." Journées Équations aux dérivées partielles (2012): 1-17. <http://eudml.org/doc/275561>.
@article{Gallay2012,
abstract = {We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as $t \rightarrow \infty $. This result was obtained in collaboration with Y. Maekawa (Kobe University).},
affiliation = {Institut Fourier Université de Grenoble 1 100, rue des Maths, B.P. 74 38402 Saint-Martin-d’Hères, France},
author = {Gallay, Thierry},
journal = {Journées Équations aux dérivées partielles},
keywords = {Navier-Stokes equation; long-time behavior; exterior domain},
language = {eng},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain},
url = {http://eudml.org/doc/275561},
year = {2012},
}
TY - JOUR
AU - Gallay, Thierry
TI - Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as $t \rightarrow \infty $. This result was obtained in collaboration with Y. Maekawa (Kobe University).
LA - eng
KW - Navier-Stokes equation; long-time behavior; exterior domain
UR - http://eudml.org/doc/275561
ER -
References
top- H. Bae, B. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal. 240 (2006), 508-529 Zbl1115.35095MR2261693
- J. Bedrossian, N. Masmoudi, Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in with Measure-valued Initial Data, (2012) Zbl06380506
- J. Bergh, J. Löfström, Interpolation spaces. An introduction, (1976), Springer-Verlag, Berlin Zbl0344.46071MR482275
- W. Borchers, T. Miyakawa, -decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal. 118 (1992), 273-295 Zbl0756.76018MR1158939
- A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), 827-872 Zbl0816.35108MR1274542
- P. Constantin, C. Foias, Navier-Stokes equations, (1988), University of Chicago Press, Chicago, IL Zbl0687.35071MR972259
- W. Dan, Y. Shibata, On the – estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan 51 (1999), 181-207 Zbl0924.35094MR1661048
- W. Dan, Y. Shibata, Remark on the - estimate of the Stokes semigroup in a -dimensional exterior domain, Pacific J. Math. 189 (1999), 223-239 Zbl0931.35021MR1696121
- H. Fujita, T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269-315 Zbl0126.42301MR166499
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, (2011), Springer, New York Zbl1245.35002MR2808162
- I. Gallagher, Th. Gallay, Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann. 332 (2005), 287-327 Zbl1096.35102MR2178064
- Th. Gallay, Y. Maekawa, Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity, (2012) Zbl06212819MR3092735
- Th. Gallay, C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), 97-129 Zbl1139.35084MR2123378
- Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal. 104 (1988), 223-250 Zbl0666.76052MR1017289
- C. He, T. Miyakawa, Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries, Indiana Univ. Math. J. 55 (2006), 1483-1555 Zbl1122.35095MR2270928
- C. He, T. Miyakawa, On two-dimensional Navier-Stokes flows with rotational symmetries, Funkcial. Ekvac. 49 (2006), 163-192 Zbl1179.35215MR2271231
- D. Iftimie, M. Lopes Filho, H. Nussenzveig Lopes, Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations 28 (2003), 349-379 Zbl1094.76007MR1974460
- G. Iftimie, G. Karch, Ch. Lacave, Self-similar asymptotics of solutions to the Navier-Stokes system in two dimensional exterior domain, (2011)
- T. Kato, H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260 Zbl0114.05002MR142928
- H. Kozono, -solutions of the Navier-Stokes equations in exterior domains, Math. Ann. 312 (1998), 319-340 Zbl0920.35108MR1671800
- H. Kozono, T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two-dimensional unbounded domains, Arch. Rational Mech. Anal. 122 (1993), 1-17 Zbl0781.35053MR1207238
- H. Kozono, T. Ogawa, Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann. 297 (1993), 1-31 Zbl0796.35129MR1238405
- H. Kozono, M. Yamazaki, Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space , Houston J. Math. 21 (1995), 755-799 Zbl0848.35099MR1368344
- O. A. Ladyženskaja, Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math. 12 (1959), 427-433 Zbl0103.19502MR108962
- J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appliquées 9ème série 12 (1933), 1-82 Zbl0006.16702
- J. Leray, Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appliquées 9ème série 13 (1934), 331-418 Zbl60.0727.01
- J.-L. Lions, G. Prodi, Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris 248 (1959), 3519-3521 Zbl0091.42105MR108964
- K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2) 36 (1984), 623-646 Zbl0568.35077MR767409
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.