Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain

Thierry Gallay[1]

  • [1] Institut Fourier Université de Grenoble 1 100, rue des Maths, B.P. 74 38402 Saint-Martin-d’Hères, France

Journées Équations aux dérivées partielles (2012)

  • page 1-17
  • ISSN: 0752-0360

Abstract

top
We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as t . This result was obtained in collaboration with Y. Maekawa (Kobe University).

How to cite

top

Gallay, Thierry. "Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain." Journées Équations aux dérivées partielles (2012): 1-17. <http://eudml.org/doc/275561>.

@article{Gallay2012,
abstract = {We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as $t \rightarrow \infty $. This result was obtained in collaboration with Y. Maekawa (Kobe University).},
affiliation = {Institut Fourier Université de Grenoble 1 100, rue des Maths, B.P. 74 38402 Saint-Martin-d’Hères, France},
author = {Gallay, Thierry},
journal = {Journées Équations aux dérivées partielles},
keywords = {Navier-Stokes equation; long-time behavior; exterior domain},
language = {eng},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain},
url = {http://eudml.org/doc/275561},
year = {2012},
}

TY - JOUR
AU - Gallay, Thierry
TI - Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as $t \rightarrow \infty $. This result was obtained in collaboration with Y. Maekawa (Kobe University).
LA - eng
KW - Navier-Stokes equation; long-time behavior; exterior domain
UR - http://eudml.org/doc/275561
ER -

References

top
  1. H. Bae, B. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal. 240 (2006), 508-529 Zbl1115.35095MR2261693
  2. J. Bedrossian, N. Masmoudi, Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in 2 with Measure-valued Initial Data, (2012) Zbl06380506
  3. J. Bergh, J. Löfström, Interpolation spaces. An introduction, (1976), Springer-Verlag, Berlin Zbl0344.46071MR482275
  4. W. Borchers, T. Miyakawa, L 2 -decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal. 118 (1992), 273-295 Zbl0756.76018MR1158939
  5. A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), 827-872 Zbl0816.35108MR1274542
  6. P. Constantin, C. Foias, Navier-Stokes equations, (1988), University of Chicago Press, Chicago, IL Zbl0687.35071MR972259
  7. W. Dan, Y. Shibata, On the L q L r estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan 51 (1999), 181-207 Zbl0924.35094MR1661048
  8. W. Dan, Y. Shibata, Remark on the L q - L estimate of the Stokes semigroup in a 2 -dimensional exterior domain, Pacific J. Math. 189 (1999), 223-239 Zbl0931.35021MR1696121
  9. H. Fujita, T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269-315 Zbl0126.42301MR166499
  10. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, (2011), Springer, New York Zbl1245.35002MR2808162
  11. I. Gallagher, Th. Gallay, Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann. 332 (2005), 287-327 Zbl1096.35102MR2178064
  12. Th. Gallay, Y. Maekawa, Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity, (2012) Zbl06212819MR3092735
  13. Th. Gallay, C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), 97-129 Zbl1139.35084MR2123378
  14. Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal. 104 (1988), 223-250 Zbl0666.76052MR1017289
  15. C. He, T. Miyakawa, Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries, Indiana Univ. Math. J. 55 (2006), 1483-1555 Zbl1122.35095MR2270928
  16. C. He, T. Miyakawa, On two-dimensional Navier-Stokes flows with rotational symmetries, Funkcial. Ekvac. 49 (2006), 163-192 Zbl1179.35215MR2271231
  17. D. Iftimie, M. Lopes Filho, H. Nussenzveig Lopes, Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations 28 (2003), 349-379 Zbl1094.76007MR1974460
  18. G. Iftimie, G. Karch, Ch. Lacave, Self-similar asymptotics of solutions to the Navier-Stokes system in two dimensional exterior domain, (2011) 
  19. T. Kato, H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260 Zbl0114.05002MR142928
  20. H. Kozono, L 1 -solutions of the Navier-Stokes equations in exterior domains, Math. Ann. 312 (1998), 319-340 Zbl0920.35108MR1671800
  21. H. Kozono, T. Ogawa, Decay properties of strong solutions for the Navier-Stokes equations in two-dimensional unbounded domains, Arch. Rational Mech. Anal. 122 (1993), 1-17 Zbl0781.35053MR1207238
  22. H. Kozono, T. Ogawa, Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann. 297 (1993), 1-31 Zbl0796.35129MR1238405
  23. H. Kozono, M. Yamazaki, Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n , , Houston J. Math. 21 (1995), 755-799 Zbl0848.35099MR1368344
  24. O. A. Ladyženskaja, Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math. 12 (1959), 427-433 Zbl0103.19502MR108962
  25. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appliquées 9ème série 12 (1933), 1-82 Zbl0006.16702
  26. J. Leray, Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appliquées 9ème série 13 (1934), 331-418 Zbl60.0727.01
  27. J.-L. Lions, G. Prodi, Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris 248 (1959), 3519-3521 Zbl0091.42105MR108964
  28. K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2) 36 (1984), 623-646 Zbl0568.35077MR767409

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.