Matrix factorizations and singularity categories for stacks
Alexander Polishchuk[1]; Arkady Vaintrob[1]
- [1] Department of Mathematics, University of Oregon, Eugene, OR 97405
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2609-2642
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPolishchuk, Alexander, and Vaintrob, Arkady. "Matrix factorizations and singularity categories for stacks." Annales de l’institut Fourier 61.7 (2011): 2609-2642. <http://eudml.org/doc/275563>.
@article{Polishchuk2011,
abstract = {We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.},
affiliation = {Department of Mathematics, University of Oregon, Eugene, OR 97405; Department of Mathematics, University of Oregon, Eugene, OR 97405},
author = {Polishchuk, Alexander, Vaintrob, Arkady},
journal = {Annales de l’institut Fourier},
keywords = {matrix factorizations; singularity category; algebraic stack; smooth algebraic stacks; singularity categories; derived categories; push-forward functors; quasi-matrix factorizations; dg-categories; localization},
language = {eng},
number = {7},
pages = {2609-2642},
publisher = {Association des Annales de l’institut Fourier},
title = {Matrix factorizations and singularity categories for stacks},
url = {http://eudml.org/doc/275563},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Polishchuk, Alexander
AU - Vaintrob, Arkady
TI - Matrix factorizations and singularity categories for stacks
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2609
EP - 2642
AB - We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.
LA - eng
KW - matrix factorizations; singularity category; algebraic stack; smooth algebraic stacks; singularity categories; derived categories; push-forward functors; quasi-matrix factorizations; dg-categories; localization
UR - http://eudml.org/doc/275563
ER -
References
top- D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3648 Zbl1077.14034MR2007376
- D. Arinkin, R. Bezrukavnikov, Perverse coherent sheaves, Moscow Math. J. 10 (2010), 3-29 Zbl1205.18010MR2668828
- H. Bass, Big projective modules are free, Illinois J. Math. 7 (1963), 24-31 Zbl0115.26003MR143789
- I. Brunner, M. Herbst, W. Lerche, J. Walcher, Matrix Factorizations And Mirror Symmetry: The Cubic Curve, (2006), University of Chicago Press MR2270440
- I. Brunner, D. Roggenkamp, B-type defects in Landau-Ginzburg models, (2007), University of Chicago Press Zbl1326.81187MR2342020
- R. Buchweitz, G. Greuel, F. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), 165-182 Zbl0617.14034MR877011
- M. Bökstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234 Zbl0802.18008MR1214458
- X.-W. Chen, Unifying two results of D. Orlov, Abhandlungen Mathem. Seminar Univ. Hamburg 80 (2010), 207-212 Zbl1214.18013MR2734686
- A. I. Efimov, Homological mirror symmetry for curves of higher genus, Adv. Math. 230 (2012), 493-530 Zbl1242.14039MR2914956
- D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64 Zbl0444.13006MR570778
- H. Fan, T. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle
- H. Fan, T. Jarvis, Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory Zbl1310.32032
- L. Gruson, M. Raynaud, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010MR308104
- M. Herbst, K. Hori, D. Page, Phases Of Theories In Dimensions With Boundary
- L. Illusie, Conditions de finitude relative, SGA6, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. III 225 (1971), Springer-Verlag, Berlin-New York Zbl0229.14009
- L. Illusie, Existence de résolutions globales, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. II 225 (1971), Springer-Verlag, Berlin-New York Zbl0241.14002
- L. Illusie, Géneralités sur les conditions de finitude dans les catégories dérivées, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. I 225 (1971), Springer-Verlag, Berlin-New York Zbl0229.14010
- H. Kajiura, K. Saito, A. Takahashi, Matrix factorization and representations of quivers. II. Type ADE case, Adv. Math. 211 (2007), 327-362 Zbl1167.16011MR2313537
- A. Kapustin, Y. Li, D-branes in Landau-Ginzburg models and algebraic geometry, J. High Energy Phys. (2003) MR2041170
- A. Kapustin, Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003), 727-749 Zbl1058.81061MR2039036
- L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT -geometry (2008), 87-174, Amer. Math. Soc., Providence, RI Zbl1206.14009MR2483750
- M. Khovanov, L. Rozansky, Matrix factorizations and Link homology, Fund. Math. 199 (2008), 1-91 Zbl1145.57009MR2391017
- M. Kontsevich, Hodge structures in non-commutative geometry, Non-commutative geometry in mathematics and physics (2008), 1-21, Amer. Math. Soc., Providence, RI Zbl1155.53060MR2444365
- A. Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry (Seattle 2005). Part 1 (2009), 259-271, Amer. Math. Soc., Providence, RI Zbl1169.14001MR2483938
- D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. (2004), 227-248 Zbl1101.81093MR2101296
- D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin II (2009), 503-531, Birkhäuser, Boston Zbl1200.18007MR2641200
- D. Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), 206-217 Zbl1216.18012MR2735755
- A. Polishchuk, A. Vaintrob, Matrix factorizations and cohomological field theories Zbl06576588
- A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J. 161 (2012), 1863-1926 Zbl1249.14001MR2954619
- L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, 212 (2011) Zbl1275.18002MR2830562
- A. Quintero Vélez, McKay correspondence for Landau-Ginzburg models, Commun. Number Theory Phys. 3 (2009), 173-208 Zbl1169.14011MR2504756
- M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), 209-236 Zbl1100.14001MR2125542
- E. Segal, Equivalences between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys. 304 (2011), 411-432 Zbl1216.81122MR2795327
- P. Seidel, Homological mirror symmetry for the genus two curve, preprint J. Algebraic Geom. 20 (2011), 727-769 Zbl1226.14028MR2819674
- R. W. Thomason, Algebraic -theory of group scheme actions, Algebraic topology and algebraic -theory (Princeton, N.J., 1983) (1987), 539-563, Princeton Univ. Press Zbl0701.19002MR921490
- J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) Zbl1110.81152MR2165838
- Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, (1990), Cambridge University Press, Cambridge Zbl0745.13003MR1079937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.