Matrix factorizations and singularity categories for stacks

Alexander Polishchuk[1]; Arkady Vaintrob[1]

  • [1] Department of Mathematics, University of Oregon, Eugene, OR 97405

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2609-2642
  • ISSN: 0373-0956

Abstract

top
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.

How to cite

top

Polishchuk, Alexander, and Vaintrob, Arkady. "Matrix factorizations and singularity categories for stacks." Annales de l’institut Fourier 61.7 (2011): 2609-2642. <http://eudml.org/doc/275563>.

@article{Polishchuk2011,
abstract = {We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.},
affiliation = {Department of Mathematics, University of Oregon, Eugene, OR 97405; Department of Mathematics, University of Oregon, Eugene, OR 97405},
author = {Polishchuk, Alexander, Vaintrob, Arkady},
journal = {Annales de l’institut Fourier},
keywords = {matrix factorizations; singularity category; algebraic stack; smooth algebraic stacks; singularity categories; derived categories; push-forward functors; quasi-matrix factorizations; dg-categories; localization},
language = {eng},
number = {7},
pages = {2609-2642},
publisher = {Association des Annales de l’institut Fourier},
title = {Matrix factorizations and singularity categories for stacks},
url = {http://eudml.org/doc/275563},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Polishchuk, Alexander
AU - Vaintrob, Arkady
TI - Matrix factorizations and singularity categories for stacks
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2609
EP - 2642
AB - We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.
LA - eng
KW - matrix factorizations; singularity category; algebraic stack; smooth algebraic stacks; singularity categories; derived categories; push-forward functors; quasi-matrix factorizations; dg-categories; localization
UR - http://eudml.org/doc/275563
ER -

References

top
  1. D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3648 Zbl1077.14034MR2007376
  2. D. Arinkin, R. Bezrukavnikov, Perverse coherent sheaves, Moscow Math. J. 10 (2010), 3-29 Zbl1205.18010MR2668828
  3. H. Bass, Big projective modules are free, Illinois J. Math. 7 (1963), 24-31 Zbl0115.26003MR143789
  4. I. Brunner, M. Herbst, W. Lerche, J. Walcher, Matrix Factorizations And Mirror Symmetry: The Cubic Curve, (2006), University of Chicago Press MR2270440
  5. I. Brunner, D. Roggenkamp, B-type defects in Landau-Ginzburg models, (2007), University of Chicago Press Zbl1326.81187MR2342020
  6. R. Buchweitz, G. Greuel, F. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), 165-182 Zbl0617.14034MR877011
  7. M. Bökstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234 Zbl0802.18008MR1214458
  8. X.-W. Chen, Unifying two results of D. Orlov, Abhandlungen Mathem. Seminar Univ. Hamburg 80 (2010), 207-212 Zbl1214.18013MR2734686
  9. A. I. Efimov, Homological mirror symmetry for curves of higher genus, Adv. Math. 230 (2012), 493-530 Zbl1242.14039MR2914956
  10. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64 Zbl0444.13006MR570778
  11. H. Fan, T. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle 
  12. H. Fan, T. Jarvis, Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory Zbl1310.32032
  13. L. Gruson, M. Raynaud, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1-89 Zbl0227.14010MR308104
  14. M. Herbst, K. Hori, D. Page, Phases Of N = 2 Theories In 1 + 1 Dimensions With Boundary 
  15. L. Illusie, Conditions de finitude relative, SGA6, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. III 225 (1971), Springer-Verlag, Berlin-New York Zbl0229.14009
  16. L. Illusie, Existence de résolutions globales, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. II 225 (1971), Springer-Verlag, Berlin-New York Zbl0241.14002
  17. L. Illusie, Géneralités sur les conditions de finitude dans les catégories dérivées, Théorie des intersections et théorème de Riemann-Roch, SGA6, exp. I 225 (1971), Springer-Verlag, Berlin-New York Zbl0229.14010
  18. H. Kajiura, K. Saito, A. Takahashi, Matrix factorization and representations of quivers. II. Type ADE case, Adv. Math. 211 (2007), 327-362 Zbl1167.16011MR2313537
  19. A. Kapustin, Y. Li, D-branes in Landau-Ginzburg models and algebraic geometry, J. High Energy Phys. (2003) MR2041170
  20. A. Kapustin, Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003), 727-749 Zbl1058.81061MR2039036
  21. L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT -geometry (2008), 87-174, Amer. Math. Soc., Providence, RI Zbl1206.14009MR2483750
  22. M. Khovanov, L. Rozansky, Matrix factorizations and Link homology, Fund. Math. 199 (2008), 1-91 Zbl1145.57009MR2391017
  23. M. Kontsevich, Hodge structures in non-commutative geometry, Non-commutative geometry in mathematics and physics (2008), 1-21, Amer. Math. Soc., Providence, RI Zbl1155.53060MR2444365
  24. A. Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry (Seattle 2005). Part 1 (2009), 259-271, Amer. Math. Soc., Providence, RI Zbl1169.14001MR2483938
  25. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. (2004), 227-248 Zbl1101.81093MR2101296
  26. D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin II (2009), 503-531, Birkhäuser, Boston Zbl1200.18007MR2641200
  27. D. Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), 206-217 Zbl1216.18012MR2735755
  28. A. Polishchuk, A. Vaintrob, Matrix factorizations and cohomological field theories Zbl06576588
  29. A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J. 161 (2012), 1863-1926 Zbl1249.14001MR2954619
  30. L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, 212 (2011) Zbl1275.18002MR2830562
  31. A. Quintero Vélez, McKay correspondence for Landau-Ginzburg models, Commun. Number Theory Phys. 3 (2009), 173-208 Zbl1169.14011MR2504756
  32. M. Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005), 209-236 Zbl1100.14001MR2125542
  33. E. Segal, Equivalences between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys. 304 (2011), 411-432 Zbl1216.81122MR2795327
  34. P. Seidel, Homological mirror symmetry for the genus two curve, preprint J. Algebraic Geom. 20 (2011), 727-769 Zbl1226.14028MR2819674
  35. R. W. Thomason, Algebraic K -theory of group scheme actions, Algebraic topology and algebraic -theory (Princeton, N.J., 1983) (1987), 539-563, Princeton Univ. Press Zbl0701.19002MR921490
  36. J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) Zbl1110.81152MR2165838
  37. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, (1990), Cambridge University Press, Cambridge Zbl0745.13003MR1079937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.