Margulis Lemma, entropy and free products
- [1] Università di Roma “Sapienza” Dipartimento di Matematica “G. Castelnuovo” Piazzale Aldo Moro 5 00185 Roma (Italy) & Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St. Martin d’Hères (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 1011-1030
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCerocchi, Filippo. "Margulis Lemma, entropy and free products." Annales de l’institut Fourier 64.3 (2014): 1011-1030. <http://eudml.org/doc/275569>.
@article{Cerocchi2014,
abstract = {We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product $A*B$, without 2-torsion. Moreover, if $A* B$ is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.},
affiliation = {Università di Roma “Sapienza” Dipartimento di Matematica “G. Castelnuovo” Piazzale Aldo Moro 5 00185 Roma (Italy) & Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St. Martin d’Hères (France)},
author = {Cerocchi, Filippo},
journal = {Annales de l’institut Fourier},
keywords = {Entropy; growth of groups; free products; systole; entropy},
language = {eng},
number = {3},
pages = {1011-1030},
publisher = {Association des Annales de l’institut Fourier},
title = {Margulis Lemma, entropy and free products},
url = {http://eudml.org/doc/275569},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Cerocchi, Filippo
TI - Margulis Lemma, entropy and free products
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1011
EP - 1030
AB - We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product $A*B$, without 2-torsion. Moreover, if $A* B$ is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.
LA - eng
KW - Entropy; growth of groups; free products; systole; entropy
UR - http://eudml.org/doc/275569
ER -
References
top- Igor Belegradek, Lipschitz precompactness for closed negatively curved manifolds, Proc. Amer. Math. Soc. 127 (1999), 1201-1208 Zbl0958.53033MR1476116
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74 Zbl0194.52902MR263092
- Karel Dekimpe, Almost-Bieberbach groups: affine and polynomial structures, 1639 (1996), Springer-Verlag, Berlin Zbl0865.20001MR1482520
- Kenji Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry 18 (1990), 143-238, Academic Press, Boston, MA Zbl0754.53004MR1145256
- G. G. Besson, G. Courtois, S. Gallot, Un lemme de Margulis sans courbure et ses applications, (2003)
- Robert E. Greene, Peter Petersen, Little topology, big volume, Duke Math. J. 67 (1992), 273-290 Zbl0772.53033MR1177307
- M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230 Zbl0433.53028MR540941
- Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147 Zbl0515.53037MR697984
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, (2007), Birkhäuser Boston Inc., Boston, MA Zbl1113.53001MR2307192
- Pierre de la Harpe, Topics in geometric group theory, (2000), University of Chicago Press, Chicago, IL Zbl0965.20025MR1786869
- Atsushi Katsuda, Correction to: “Gromov’s convergence theorem and its application” [Nagoya Math. J. 100 (1985), 11–48; MR0818156 (87e:53067)], Nagoya Math. J. 114 (1989), 173-174 Zbl0682.53044MR818156
- G. Robert, Invariants topologiques et géométriques reliés aux longuers des géodésiques et aux sections harmoniques de fibrés, (1994)
- Stéphane Sabourau, Global and local volume bounds and the shortest geodesic loops, Comm. Anal. Geom. 12 (2004), 1039-1053 Zbl1075.53030MR2103310
- Homological Group Theory, 36 (1986), WallC.T.C.C.T.C.
- Fabio Zuddas, Some finiteness results for groups with bounded algebraic entropy, Geom. Dedicata 143 (2009), 49-62 Zbl1221.20030MR2576292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.