Margulis Lemma, entropy and free products

Filippo Cerocchi[1]

  • [1] Università di Roma “Sapienza” Dipartimento di Matematica “G. Castelnuovo” Piazzale Aldo Moro 5 00185 Roma (Italy) & Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St. Martin d’Hères (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1011-1030
  • ISSN: 0373-0956

Abstract

top
We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product A * B , without 2-torsion. Moreover, if A * B is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.

How to cite

top

Cerocchi, Filippo. "Margulis Lemma, entropy and free products." Annales de l’institut Fourier 64.3 (2014): 1011-1030. <http://eudml.org/doc/275569>.

@article{Cerocchi2014,
abstract = {We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product $A*B$, without 2-torsion. Moreover, if $A* B$ is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.},
affiliation = {Università di Roma “Sapienza” Dipartimento di Matematica “G. Castelnuovo” Piazzale Aldo Moro 5 00185 Roma (Italy) & Université Grenoble 1 Institut Fourier 100 rue des maths BP 74 38402 St. Martin d’Hères (France)},
author = {Cerocchi, Filippo},
journal = {Annales de l’institut Fourier},
keywords = {Entropy; growth of groups; free products; systole; entropy},
language = {eng},
number = {3},
pages = {1011-1030},
publisher = {Association des Annales de l’institut Fourier},
title = {Margulis Lemma, entropy and free products},
url = {http://eudml.org/doc/275569},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cerocchi, Filippo
TI - Margulis Lemma, entropy and free products
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1011
EP - 1030
AB - We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product $A*B$, without 2-torsion. Moreover, if $A* B$ is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.
LA - eng
KW - Entropy; growth of groups; free products; systole; entropy
UR - http://eudml.org/doc/275569
ER -

References

top
  1. Igor Belegradek, Lipschitz precompactness for closed negatively curved manifolds, Proc. Amer. Math. Soc. 127 (1999), 1201-1208 Zbl0958.53033MR1476116
  2. Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74 Zbl0194.52902MR263092
  3. Karel Dekimpe, Almost-Bieberbach groups: affine and polynomial structures, 1639 (1996), Springer-Verlag, Berlin Zbl0865.20001MR1482520
  4. Kenji Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry 18 (1990), 143-238, Academic Press, Boston, MA Zbl0754.53004MR1145256
  5. G. G. Besson, G. Courtois, S. Gallot, Un lemme de Margulis sans courbure et ses applications, (2003) 
  6. Robert E. Greene, Peter Petersen, Little topology, big volume, Duke Math. J. 67 (1992), 273-290 Zbl0772.53033MR1177307
  7. M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230 Zbl0433.53028MR540941
  8. Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147 Zbl0515.53037MR697984
  9. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, (2007), Birkhäuser Boston Inc., Boston, MA Zbl1113.53001MR2307192
  10. Pierre de la Harpe, Topics in geometric group theory, (2000), University of Chicago Press, Chicago, IL Zbl0965.20025MR1786869
  11. Atsushi Katsuda, Correction to: “Gromov’s convergence theorem and its application” [Nagoya Math. J. 100 (1985), 11–48; MR0818156 (87e:53067)], Nagoya Math. J. 114 (1989), 173-174 Zbl0682.53044MR818156
  12. G. Robert, Invariants topologiques et géométriques reliés aux longuers des géodésiques et aux sections harmoniques de fibrés, (1994) 
  13. Stéphane Sabourau, Global and local volume bounds and the shortest geodesic loops, Comm. Anal. Geom. 12 (2004), 1039-1053 Zbl1075.53030MR2103310
  14. Homological Group Theory, 36 (1986), WallC.T.C.C.T.C. 
  15. Fabio Zuddas, Some finiteness results for groups with bounded algebraic entropy, Geom. Dedicata 143 (2009), 49-62 Zbl1221.20030MR2576292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.