Spherical varieties and Wahl’s conjecture
- [1] Heinrich-Heine-Universität Mathematisches Institut Universitätsstr. 1 40225 Düsseldorf (Germany)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 2, page 739-751
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPerrin, Nicolas. "Spherical varieties and Wahl’s conjecture." Annales de l’institut Fourier 64.2 (2014): 739-751. <http://eudml.org/doc/275570>.
@article{Perrin2014,
abstract = {Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.},
affiliation = {Heinrich-Heine-Universität Mathematisches Institut Universitätsstr. 1 40225 Düsseldorf (Germany)},
author = {Perrin, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius splitting; spherical varieties; Wahl’s conjecture; Wahl's conjecture},
language = {eng},
number = {2},
pages = {739-751},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical varieties and Wahl’s conjecture},
url = {http://eudml.org/doc/275570},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Perrin, Nicolas
TI - Spherical varieties and Wahl’s conjecture
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 739
EP - 751
AB - Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.
LA - eng
KW - Frobenius splitting; spherical varieties; Wahl’s conjecture; Wahl's conjecture
UR - http://eudml.org/doc/275570
ER -
References
top- P. Achinger, N. Perrin, On spherical multiple flags, (2013)
- N. Bourbaki, Groupes et algèbres de Lie, (1954), Hermann, Paris Zbl0483.22001
- M. Brion, S. P. Inamdar, Frobenius splitting of spherical varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) 56 (1994), 207-218, Amer. Math. Soc., Providence, RI Zbl0820.14032MR1278708
- Michel Brion, Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser, Boston, MA Zbl1072.14066MR2107324
- J. Brown, V. Lakshmibai, Wahl’s conjecture for a minuscule , Proc. Indian Acad. Sci. Math. Sci. 119 (2009), 571-592 Zbl1192.14036MR2598420
- C. De Concini, T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), 273-300 Zbl0966.14035MR1712864
- Stephen Donkin, Invariants of unipotent radicals, Math. Z. 198 (1988), 117-125 Zbl0627.14013MR938033
- A. G. Helminck, S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), 26-96 Zbl0788.22022MR1215304
- Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
- Shrawan Kumar, Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties, Amer. J. Math. 114 (1992), 1201-1220 Zbl0790.14015MR1198300
- V. Lakshmibai, V. B. Mehta, A. J. Parameswaran, Frobenius splittings and blow-ups, J. Algebra 208 (1998), 101-128 Zbl0955.14006MR1643983
- Venkatramani Lakshmibai, Komaranapuram N. Raghavan, Parameswaran Sankaran, Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians, Cent. Eur. J. Math. 7 (2009), 214-223 Zbl1200.14100MR2506962
- Niels Lauritzen, Jesper Funch Thomsen, Maximal compatible splitting and diagonals of Kempf varieties, Ann. Inst. Fourier (Grenoble) 61 (2011), 2543-2575 (2012) Zbl1251.14037MR2976320
- Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), 142-157 Zbl0823.20040MR1276821
- V. B. Mehta, A. J. Parameswaran, On Wahl’s conjecture for the Grassmannians in positive characteristic, Internat. J. Math. 8 (1997), 495-498 Zbl0914.14021MR1460897
- Tadao Oda, Convex bodies and algebraic geometry, 15 (1988), Springer-Verlag, Berlin Zbl0628.52002MR922894
- John R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory 7 (2003), 404-439 (electronic) Zbl1060.17001MR2017064
- Jesper Funch Thomsen, A proof of Wahl’s conjecture in the symplectic case, Transform. Groups 18 (2013), 263-286 Zbl1271.14024MR3022765
- Thierry Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317-333 Zbl0332.22018MR366941
- Jonathan Wahl, Gaussian maps and tensor products of irreducible representations, Manuscripta Math. 73 (1991), 229-259 Zbl0764.20022MR1132139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.