Spherical varieties and Wahl’s conjecture

Nicolas Perrin[1]

  • [1] Heinrich-Heine-Universität Mathematisches Institut Universitätsstr. 1 40225 Düsseldorf (Germany)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 739-751
  • ISSN: 0373-0956

Abstract

top
Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.

How to cite

top

Perrin, Nicolas. "Spherical varieties and Wahl’s conjecture." Annales de l’institut Fourier 64.2 (2014): 739-751. <http://eudml.org/doc/275570>.

@article{Perrin2014,
abstract = {Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.},
affiliation = {Heinrich-Heine-Universität Mathematisches Institut Universitätsstr. 1 40225 Düsseldorf (Germany)},
author = {Perrin, Nicolas},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius splitting; spherical varieties; Wahl’s conjecture; Wahl's conjecture},
language = {eng},
number = {2},
pages = {739-751},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical varieties and Wahl’s conjecture},
url = {http://eudml.org/doc/275570},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Perrin, Nicolas
TI - Spherical varieties and Wahl’s conjecture
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 739
EP - 751
AB - Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.
LA - eng
KW - Frobenius splitting; spherical varieties; Wahl’s conjecture; Wahl's conjecture
UR - http://eudml.org/doc/275570
ER -

References

top
  1. P. Achinger, N. Perrin, On spherical multiple flags, (2013) 
  2. N. Bourbaki, Groupes et algèbres de Lie, (1954), Hermann, Paris Zbl0483.22001
  3. M. Brion, S. P. Inamdar, Frobenius splitting of spherical varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) 56 (1994), 207-218, Amer. Math. Soc., Providence, RI Zbl0820.14032MR1278708
  4. Michel Brion, Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser, Boston, MA Zbl1072.14066MR2107324
  5. J. Brown, V. Lakshmibai, Wahl’s conjecture for a minuscule G / P , Proc. Indian Acad. Sci. Math. Sci. 119 (2009), 571-592 Zbl1192.14036MR2598420
  6. C. De Concini, T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), 273-300 Zbl0966.14035MR1712864
  7. Stephen Donkin, Invariants of unipotent radicals, Math. Z. 198 (1988), 117-125 Zbl0627.14013MR938033
  8. A. G. Helminck, S. P. Wang, On rationality properties of involutions of reductive groups, Adv. Math. 99 (1993), 26-96 Zbl0788.22022MR1215304
  9. Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  10. Shrawan Kumar, Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties, Amer. J. Math. 114 (1992), 1201-1220 Zbl0790.14015MR1198300
  11. V. Lakshmibai, V. B. Mehta, A. J. Parameswaran, Frobenius splittings and blow-ups, J. Algebra 208 (1998), 101-128 Zbl0955.14006MR1643983
  12. Venkatramani Lakshmibai, Komaranapuram N. Raghavan, Parameswaran Sankaran, Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians, Cent. Eur. J. Math. 7 (2009), 214-223 Zbl1200.14100MR2506962
  13. Niels Lauritzen, Jesper Funch Thomsen, Maximal compatible splitting and diagonals of Kempf varieties, Ann. Inst. Fourier (Grenoble) 61 (2011), 2543-2575 (2012) Zbl1251.14037MR2976320
  14. Peter Littelmann, On spherical double cones, J. Algebra 166 (1994), 142-157 Zbl0823.20040MR1276821
  15. V. B. Mehta, A. J. Parameswaran, On Wahl’s conjecture for the Grassmannians in positive characteristic, Internat. J. Math. 8 (1997), 495-498 Zbl0914.14021MR1460897
  16. Tadao Oda, Convex bodies and algebraic geometry, 15 (1988), Springer-Verlag, Berlin Zbl0628.52002MR922894
  17. John R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory 7 (2003), 404-439 (electronic) Zbl1060.17001MR2017064
  18. Jesper Funch Thomsen, A proof of Wahl’s conjecture in the symplectic case, Transform. Groups 18 (2013), 263-286 Zbl1271.14024MR3022765
  19. Thierry Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317-333 Zbl0332.22018MR366941
  20. Jonathan Wahl, Gaussian maps and tensor products of irreducible representations, Manuscripta Math. 73 (1991), 229-259 Zbl0764.20022MR1132139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.