Koszul duality and semisimplicity of Frobenius
Pramod N. Achar[1]; Simon Riche[2]
- [1] Department of Mathematics Louisiana State University Baton Rouge, LA 70803 USA
- [2] Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448, F-63000 Clermont-Ferrand. CNRS, UMR 6620, Laboratoire de Mathématiques, F-63177 Aubière.
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 4, page 1511-1612
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAchar, Pramod N., and Riche, Simon. "Koszul duality and semisimplicity of Frobenius." Annales de l’institut Fourier 63.4 (2013): 1511-1612. <http://eudml.org/doc/275579>.
@article{Achar2013,
abstract = {A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of $\ell $-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated analogue. In particular, we show that these functors preserve semisimplicity of the Frobenius action.},
affiliation = {Department of Mathematics Louisiana State University Baton Rouge, LA 70803 USA; Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448, F-63000 Clermont-Ferrand. CNRS, UMR 6620, Laboratoire de Mathématiques, F-63177 Aubière.},
author = {Achar, Pramod N., Riche, Simon},
journal = {Annales de l’institut Fourier},
keywords = {Koszul duality; perverse sheaves; flag variety},
language = {eng},
number = {4},
pages = {1511-1612},
publisher = {Association des Annales de l’institut Fourier},
title = {Koszul duality and semisimplicity of Frobenius},
url = {http://eudml.org/doc/275579},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Achar, Pramod N.
AU - Riche, Simon
TI - Koszul duality and semisimplicity of Frobenius
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1511
EP - 1612
AB - A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of $\ell $-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated analogue. In particular, we show that these functors preserve semisimplicity of the Frobenius action.
LA - eng
KW - Koszul duality; perverse sheaves; flag variety
UR - http://eudml.org/doc/275579
ER -
References
top- P. Achar, S. Riche, Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone Zbl1329.14092
- P. Achar, D. Treumann, Baric structures on triangulated categories and coherent sheaves, Int. Math. Res. Not. IMRN 2010 (2000) Zbl1239.18009MR2824842
- H. H. Andersen, J. C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487-252 Zbl0529.20027MR766011
- S. Arkhipov, R. Bezrukavnikov, V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595-678 Zbl1061.17013MR2053952
- M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras, (1995), Cambridge University Press Zbl0834.16001MR1314422
- A. Beĭlinson, On the derived category of perverse sheaves, -theory, arithmetic and geometry (Moscow, 1984–1986) 1289 (1987), 27-41, Springer-Verlag, Berlin Zbl0652.14008MR923133
- A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
- A. Beĭlinson, R. Bezrukavnikov, I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547-557 Zbl1075.14015MR2119139
- A. Beĭlinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527 Zbl0864.17006MR1322847
- J. Bernstein, I. Gel’fand, S. Gel’fand, Schubert cells and cohomology of the spaces , Upsehi Mat. Nauk 28 (1973), 3-26 Zbl0289.57024
- J. Bernstein, V. Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
- R. Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1-18 Zbl1065.20055MR1973365
- R. Bezrukavnikov, Cohomology of tilting modules over quantum groups and -structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), 327-357 Zbl1123.17002MR2249802
- R. Bezrukavnikov, Z. Yun, On Koszul duality for Kac–Moody groups Zbl1326.20051
- A. Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), 1-20 Zbl0807.14043MR1223221
- P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), 273-307 Zbl0287.14001MR340258
- P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), 137-252 Zbl0456.14014MR601520
- M. Goresky, R. MacPherson, Intersection homology. II, Invent. Math. (1983), 77-129 Zbl0529.55007MR696691
- D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) (1980), 185-203, Amer. Math. Soc., Providence, RI Zbl0461.14015MR573434
- J. S. Milne, Étale cohomology, (1980), Princeton University Press, Princeton Zbl0433.14012MR559531
- J. S. Milne, Motives over finite fields, Motives (Seattle, WA, 1991) 55 (1994), Part 1, Amer. Math. Soc., Providence, RI Zbl0811.14018MR1265538
- S. Morel, Complexes d’intersection des compactifications de Baily–Borel : Le cas des groupes unitaires sur , (2005)
- D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. (1997), 1361-1381 Zbl0938.14019MR1465519
- V. Ostrik, On the equivariant -theory of the nilpotent cone, Represent. Theory (2000), 296-305 Zbl0986.20045MR1773863
- J. Tate, Conjectures on algebraic cycles in -adic cohomology, Motives (Seattle, WA, 1991) 55 (1994), Part 1, Amer. Math. Soc., Providence, RI Zbl0814.14009MR1265523
- Z. Yun, Weights of mixed tilting sheaves and geometric Ringel duality, Sel. Math., New. ser. (2009), 299-320 Zbl1197.14016MR2480718
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.