Koszul duality and semisimplicity of Frobenius

Pramod N. Achar[1]; Simon Riche[2]

  • [1] Department of Mathematics Louisiana State University Baton Rouge, LA 70803 USA
  • [2] Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448, F-63000 Clermont-Ferrand. CNRS, UMR 6620, Laboratoire de Mathématiques, F-63177 Aubière.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 4, page 1511-1612
  • ISSN: 0373-0956

Abstract

top
A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of -adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated analogue. In particular, we show that these functors preserve semisimplicity of the Frobenius action.

How to cite

top

Achar, Pramod N., and Riche, Simon. "Koszul duality and semisimplicity of Frobenius." Annales de l’institut Fourier 63.4 (2013): 1511-1612. <http://eudml.org/doc/275579>.

@article{Achar2013,
abstract = {A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of $\ell $-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated analogue. In particular, we show that these functors preserve semisimplicity of the Frobenius action.},
affiliation = {Department of Mathematics Louisiana State University Baton Rouge, LA 70803 USA; Clermont Université, Université Blaise Pascal, Laboratoire de Mathématiques, BP 10448, F-63000 Clermont-Ferrand. CNRS, UMR 6620, Laboratoire de Mathématiques, F-63177 Aubière.},
author = {Achar, Pramod N., Riche, Simon},
journal = {Annales de l’institut Fourier},
keywords = {Koszul duality; perverse sheaves; flag variety},
language = {eng},
number = {4},
pages = {1511-1612},
publisher = {Association des Annales de l’institut Fourier},
title = {Koszul duality and semisimplicity of Frobenius},
url = {http://eudml.org/doc/275579},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Achar, Pramod N.
AU - Riche, Simon
TI - Koszul duality and semisimplicity of Frobenius
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1511
EP - 1612
AB - A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of $\ell $-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated analogue. In particular, we show that these functors preserve semisimplicity of the Frobenius action.
LA - eng
KW - Koszul duality; perverse sheaves; flag variety
UR - http://eudml.org/doc/275579
ER -

References

top
  1. P. Achar, S. Riche, Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone Zbl1329.14092
  2. P. Achar, D. Treumann, Baric structures on triangulated categories and coherent sheaves, Int. Math. Res. Not. IMRN 2010 (2000) Zbl1239.18009MR2824842
  3. H. H. Andersen, J. C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487-252 Zbl0529.20027MR766011
  4. S. Arkhipov, R. Bezrukavnikov, V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595-678 Zbl1061.17013MR2053952
  5. M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras, (1995), Cambridge University Press Zbl0834.16001MR1314422
  6. A. Beĭlinson, On the derived category of perverse sheaves, -theory, arithmetic and geometry (Moscow, 1984–1986) 1289 (1987), 27-41, Springer-Verlag, Berlin Zbl0652.14008MR923133
  7. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
  8. A. Beĭlinson, R. Bezrukavnikov, I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547-557 Zbl1075.14015MR2119139
  9. A. Beĭlinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527 Zbl0864.17006MR1322847
  10. J. Bernstein, I. Gel’fand, S. Gel’fand, Schubert cells and cohomology of the spaces G / P , Upsehi Mat. Nauk 28 (1973), 3-26 Zbl0289.57024
  11. J. Bernstein, V. Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
  12. R. Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1-18 Zbl1065.20055MR1973365
  13. R. Bezrukavnikov, Cohomology of tilting modules over quantum groups and t -structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), 327-357 Zbl1123.17002MR2249802
  14. R. Bezrukavnikov, Z. Yun, On Koszul duality for Kac–Moody groups Zbl1326.20051
  15. A. Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), 1-20 Zbl0807.14043MR1223221
  16. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), 273-307 Zbl0287.14001MR340258
  17. P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), 137-252 Zbl0456.14014MR601520
  18. M. Goresky, R. MacPherson, Intersection homology. II, Invent. Math. (1983), 77-129 Zbl0529.55007MR696691
  19. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) (1980), 185-203, Amer. Math. Soc., Providence, RI Zbl0461.14015MR573434
  20. J. S. Milne, Étale cohomology, (1980), Princeton University Press, Princeton Zbl0433.14012MR559531
  21. J. S. Milne, Motives over finite fields, Motives (Seattle, WA, 1991) 55 (1994), Part 1, Amer. Math. Soc., Providence, RI Zbl0811.14018MR1265538
  22. S. Morel, Complexes d’intersection des compactifications de Baily–Borel : Le cas des groupes unitaires sur , (2005) 
  23. D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. (1997), 1361-1381 Zbl0938.14019MR1465519
  24. V. Ostrik, On the equivariant K -theory of the nilpotent cone, Represent. Theory (2000), 296-305 Zbl0986.20045MR1773863
  25. J. Tate, Conjectures on algebraic cycles in -adic cohomology, Motives (Seattle, WA, 1991) 55 (1994), Part 1, Amer. Math. Soc., Providence, RI Zbl0814.14009MR1265523
  26. Z. Yun, Weights of mixed tilting sheaves and geometric Ringel duality, Sel. Math., New. ser. (2009), 299-320 Zbl1197.14016MR2480718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.