Coxeter elements for vanishing cycles of types  A 1 2  and  D 1 2

Kyoji Saito[1]

  • [1] Institute for the Physics and Mathematics of the Universe, University of Tokyo,

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2959-2984
  • ISSN: 0373-0956

Abstract

top
We introduce two entire functions f A 1 2 and f D 1 2 in two variables. Both of them have only two critical values 0 and 1 , and the associated maps C 2 C define topologically locally trivial fibrations over C { 0 , 1 } . All critical points in the singular fibers over 0 and 1 are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type A 1 2 and D 1 2 , respectively. Coxeter elements of type A 1 2 and D 1 2 , acting on the middle homology group, are introduced as the product of the monodromies around 0 and 1 . We describe the spectra of the Coxeter elements by embedding the middle homology group into a Hilbert space. The spectra turn out to be strongly continuous on the interval ( - 1 2 , 1 2 ) except at 0 for type D 1 2 .

How to cite

top

Saito, Kyoji. "Coxeter elements for vanishing cycles of types $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$." Annales de l’institut Fourier 61.7 (2011): 2959-2984. <http://eudml.org/doc/275581>.

@article{Saito2011,
abstract = {We introduce two entire functions $f_\{\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}\}$ and $f_\{\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}\}$ in two variables. Both of them have only two critical values $0$ and $1$, and the associated maps $\mathbf\{C\}^2\!\rightarrow \! \mathbf\{C\}$ define topologically locally trivial fibrations over $\mathbf\{C\}\!\setminus \!\lbrace 0,1\rbrace $. All critical points in the singular fibers over $0$ and $1$ are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$, respectively. Coxeter elements of type $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$, acting on the middle homology group, are introduced as the product of the monodromies around $0$ and $1$. We describe the spectra of the Coxeter elements by embedding the middle homology group into a Hilbert space. The spectra turn out to be strongly continuous on the interval $(-\frac\{1\}\{2\},\frac\{1\}\{2\})$ except at $0$ for type $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$.},
affiliation = {Institute for the Physics and Mathematics of the Universe, University of Tokyo,},
author = {Saito, Kyoji},
journal = {Annales de l’institut Fourier},
keywords = {vanishing cycle; spectra; Coxeter element; transcendental function; spectrum},
language = {eng},
number = {7},
pages = {2959-2984},
publisher = {Association des Annales de l’institut Fourier},
title = {Coxeter elements for vanishing cycles of types $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$},
url = {http://eudml.org/doc/275581},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Saito, Kyoji
TI - Coxeter elements for vanishing cycles of types $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2959
EP - 2984
AB - We introduce two entire functions $f_{\mathrm{A}_{\frac{1}{2}\infty }}$ and $f_{\mathrm{D}_{\frac{1}{2}\infty }}$ in two variables. Both of them have only two critical values $0$ and $1$, and the associated maps $\mathbf{C}^2\!\rightarrow \! \mathbf{C}$ define topologically locally trivial fibrations over $\mathbf{C}\!\setminus \!\lbrace 0,1\rbrace $. All critical points in the singular fibers over $0$ and $1$ are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$, respectively. Coxeter elements of type $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$, acting on the middle homology group, are introduced as the product of the monodromies around $0$ and $1$. We describe the spectra of the Coxeter elements by embedding the middle homology group into a Hilbert space. The spectra turn out to be strongly continuous on the interval $(-\frac{1}{2},\frac{1}{2})$ except at $0$ for type $\mathrm{D}_{\frac{1}{2}\infty }$.
LA - eng
KW - vanishing cycle; spectra; Coxeter element; transcendental function; spectrum
UR - http://eudml.org/doc/275581
ER -

References

top
  1. R. P. Boas, Entire Functions, (1954), Academic Press Inc., New York Zbl0058.30201MR68627
  2. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5, et 6, (1968), Hermann, Paris Zbl0483.22001MR453824
  3. F. Riesz, B. Nagy, Leçons d’analyse fonctionnelle, (1955), Académie des sciences de Hongrie, Akademiei Nyomda Zbl0046.33103
  4. K. Saito, Polyhedra Dual to Weyl Chamber Decomposition Zbl1086.14048
  5. K. Saito, Einfach elliptische Singularitäten, Inventiones Math. 23 (1974), 289-325 Zbl0296.14019MR354669
  6. K. Saito, Period mapping associated to primitive forms, Publ. RIMS 19 (1983), 1231-1264 Zbl0539.58003MR723468
  7. K. Saito, Polyhedra dual to the Weyl Chamber decomposition: A Précis., Publ. RIMS 40 (2004), 1337-1384 Zbl1086.14048MR2105710

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.