Coxeter elements for vanishing cycles of types and
Kyoji Saito[1]
- [1] Institute for the Physics and Mathematics of the Universe, University of Tokyo,
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 7, page 2959-2984
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSaito, Kyoji. "Coxeter elements for vanishing cycles of types $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$." Annales de l’institut Fourier 61.7 (2011): 2959-2984. <http://eudml.org/doc/275581>.
@article{Saito2011,
abstract = {We introduce two entire functions $f_\{\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}\}$ and $f_\{\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}\}$ in two variables. Both of them have only two critical values $0$ and $1$, and the associated maps $\mathbf\{C\}^2\!\rightarrow \! \mathbf\{C\}$ define topologically locally trivial fibrations over $\mathbf\{C\}\!\setminus \!\lbrace 0,1\rbrace $. All critical points in the singular fibers over $0$ and $1$ are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$, respectively. Coxeter elements of type $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$, acting on the middle homology group, are introduced as the product of the monodromies around $0$ and $1$. We describe the spectra of the Coxeter elements by embedding the middle homology group into a Hilbert space. The spectra turn out to be strongly continuous on the interval $(-\frac\{1\}\{2\},\frac\{1\}\{2\})$ except at $0$ for type $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$.},
affiliation = {Institute for the Physics and Mathematics of the Universe, University of Tokyo,},
author = {Saito, Kyoji},
journal = {Annales de l’institut Fourier},
keywords = {vanishing cycle; spectra; Coxeter element; transcendental function; spectrum},
language = {eng},
number = {7},
pages = {2959-2984},
publisher = {Association des Annales de l’institut Fourier},
title = {Coxeter elements for vanishing cycles of types $\mathrm\{A\}_\{\frac\{1\}\{2\}\infty \}$ and $\mathrm\{D\}_\{\frac\{1\}\{2\}\infty \}$},
url = {http://eudml.org/doc/275581},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Saito, Kyoji
TI - Coxeter elements for vanishing cycles of types $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2959
EP - 2984
AB - We introduce two entire functions $f_{\mathrm{A}_{\frac{1}{2}\infty }}$ and $f_{\mathrm{D}_{\frac{1}{2}\infty }}$ in two variables. Both of them have only two critical values $0$ and $1$, and the associated maps $\mathbf{C}^2\!\rightarrow \! \mathbf{C}$ define topologically locally trivial fibrations over $\mathbf{C}\!\setminus \!\lbrace 0,1\rbrace $. All critical points in the singular fibers over $0$ and $1$ are ordinary double points, and the associated vanishing cycles span the middle homology group of the general fiber, whose intersection diagram forms bi-partitely decomposed infinite quivers of type $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$, respectively. Coxeter elements of type $\mathrm{A}_{\frac{1}{2}\infty }$ and $\mathrm{D}_{\frac{1}{2}\infty }$, acting on the middle homology group, are introduced as the product of the monodromies around $0$ and $1$. We describe the spectra of the Coxeter elements by embedding the middle homology group into a Hilbert space. The spectra turn out to be strongly continuous on the interval $(-\frac{1}{2},\frac{1}{2})$ except at $0$ for type $\mathrm{D}_{\frac{1}{2}\infty }$.
LA - eng
KW - vanishing cycle; spectra; Coxeter element; transcendental function; spectrum
UR - http://eudml.org/doc/275581
ER -
References
top- R. P. Boas, Entire Functions, (1954), Academic Press Inc., New York Zbl0058.30201MR68627
- N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5, et 6, (1968), Hermann, Paris Zbl0483.22001MR453824
- F. Riesz, B. Nagy, Leçons d’analyse fonctionnelle, (1955), Académie des sciences de Hongrie, Akademiei Nyomda Zbl0046.33103
- K. Saito, Polyhedra Dual to Weyl Chamber Decomposition Zbl1086.14048
- K. Saito, Einfach elliptische Singularitäten, Inventiones Math. 23 (1974), 289-325 Zbl0296.14019MR354669
- K. Saito, Period mapping associated to primitive forms, Publ. RIMS 19 (1983), 1231-1264 Zbl0539.58003MR723468
- K. Saito, Polyhedra dual to the Weyl Chamber decomposition: A Précis., Publ. RIMS 40 (2004), 1337-1384 Zbl1086.14048MR2105710
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.