An analogue of the Variational Principle for group and pseudogroup actions

Andrzej Biś[1]

  • [1] University of Lodz Department of Mathematics and Computer Science ul. Banacha 22 90-238 Lodz (Poland)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 839-863
  • ISSN: 0373-0956

Abstract

top
We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational Principle for group and pseudogroup actions which allows us to study local dynamics of foliations.

How to cite

top

Biś, Andrzej. "An analogue of the Variational Principle for group and pseudogroup actions." Annales de l’institut Fourier 63.3 (2013): 839-863. <http://eudml.org/doc/275594>.

@article{Biś2013,
abstract = {We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational Principle for group and pseudogroup actions which allows us to study local dynamics of foliations.},
affiliation = {University of Lodz Department of Mathematics and Computer Science ul. Banacha 22 90-238 Lodz (Poland)},
author = {Biś, Andrzej},
journal = {Annales de l’institut Fourier},
keywords = {variational principle; topological entropy; Carathéodory structures; Carathéodory measures and dimensions; local measure entropy; pseudogroups; foliations; Hausdorff measure; homogeneous measure},
language = {eng},
number = {3},
pages = {839-863},
publisher = {Association des Annales de l’institut Fourier},
title = {An analogue of the Variational Principle for group and pseudogroup actions},
url = {http://eudml.org/doc/275594},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Biś, Andrzej
TI - An analogue of the Variational Principle for group and pseudogroup actions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 839
EP - 863
AB - We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational Principle for group and pseudogroup actions which allows us to study local dynamics of foliations.
LA - eng
KW - variational principle; topological entropy; Carathéodory structures; Carathéodory measures and dimensions; local measure entropy; pseudogroups; foliations; Hausdorff measure; homogeneous measure
UR - http://eudml.org/doc/275594
ER -

References

top
  1. J. A. Álvarez López, A. Candel, Equicontinuous foliated spaces, Math. Z. 263 (2009), 725-774 Zbl1177.53026MR2551597
  2. Luigi Ambrosio, Paolo Tilli, Topics on analysis in metric spaces, 25 (2004), Oxford University Press, Oxford Zbl1080.28001MR2039660
  3. Andrzej Biś, Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst. 11 (2004), 639-648 Zbl1063.37003MR2083436
  4. Andrzej Biś, Mariusz Urbański, Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8 (2006), 63-71 Zbl1139.37006MR2244617
  5. Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414 Zbl0212.29201MR274707
  6. Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136 Zbl0274.54030MR338317
  7. M. Brin, A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981) 1007 (1983), 30-38, Springer, Berlin Zbl0533.58020MR730261
  8. A. Bufetov, Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems 5 (1999), 137-143 Zbl0949.37001MR1681003
  9. Ronald R. Coifman, Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, (1971), Springer-Verlag, Berlin Zbl0224.43006MR499948
  10. Kenneth Falconer, Techniques in fractal geometry, (1997), John Wiley & Sons Ltd., Chichester Zbl0869.28003MR1449135
  11. Shmuel Friedland, Entropy of graphs, semigroups and groups, Ergodic theory of actions (Warwick, 1993–1994) 228 (1996), 319-343, Cambridge Univ. Press, Cambridge Zbl0878.54025MR1411226
  12. É. Ghys, R. Langevin, P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105-142 Zbl0666.57021MR926526
  13. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, (2007), Birkhäuser Boston Inc., Boston, MA Zbl1113.53001MR2307192
  14. André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367-397 Zbl0122.40702MR189060
  15. André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque (1984), 70-97 Zbl0562.57012
  16. André Haefliger, Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984) 131 (1985), 174-197, Pitman, Boston, MA Zbl0656.58042MR864868
  17. Piotr Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) 338 (2003), 173-218, Amer. Math. Soc., Providence, RI Zbl1048.46033MR2039955
  18. Juha Heinonen, Lectures on analysis on metric spaces, (2001), Springer-Verlag, New York Zbl0985.46008MR1800917
  19. Jouni Luukkainen, Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), 531-534 Zbl0897.28007MR1443161
  20. Ji-Hua Ma, Zhi-Ying Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci. Paris 346 (2008), 503-507 Zbl1138.37007MR2412786
  21. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, 44 (1995), Cambridge University Press, Cambridge Zbl0819.28004MR1333890
  22. R. Daniel Mauldin, Mariusz Urbański, Graph directed Markov systems, 148 (2003), Cambridge University Press, Cambridge Zbl1033.37025MR2003772
  23. Deane Montgomery, Leo Zippin, Topological transformation groups, (1955), Interscience Publishers, New York-London Zbl0068.01904MR73104
  24. Yakov B. Pesin, Dimension Type Characteristics for Invariant Sets of Dynamical Systems, Russian Math. Surveys 43 (1988), 111-151 Zbl0684.58024MR969568
  25. Yakov B. Pesin, Dimension theory in dynamical systems, (1997), University of Chicago Press, Chicago, IL Zbl0895.58033MR1489237
  26. Hiroki Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity 13 (2000), 995-1019 Zbl0959.30014MR1767945
  27. A .L. Vol’berg, S. V. Konyagin, There is a homogeneous measure on any compact subset of n , Soviet Math. Dokl. 30 (1984), 453-456 Zbl0598.28010
  28. A .L. Vol’berg, S. V. Konyagin, On measure with the doubling condition, Math. USSR-Izv. 30 (1988), 629-638 Zbl0727.28012
  29. P. Walczak, Dynamics of Foliations, Groups and Pseudogroups, 64 (2004), Birkhäuser, Basel Zbl1084.37022MR2056374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.