An analogue of the Variational Principle for group and pseudogroup actions
Andrzej Biś[1]
- [1] University of Lodz Department of Mathematics and Computer Science ul. Banacha 22 90-238 Lodz (Poland)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 3, page 839-863
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBiś, Andrzej. "An analogue of the Variational Principle for group and pseudogroup actions." Annales de l’institut Fourier 63.3 (2013): 839-863. <http://eudml.org/doc/275594>.
@article{Biś2013,
abstract = {We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational Principle for group and pseudogroup actions which allows us to study local dynamics of foliations.},
affiliation = {University of Lodz Department of Mathematics and Computer Science ul. Banacha 22 90-238 Lodz (Poland)},
author = {Biś, Andrzej},
journal = {Annales de l’institut Fourier},
keywords = {variational principle; topological entropy; Carathéodory structures; Carathéodory measures and dimensions; local measure entropy; pseudogroups; foliations; Hausdorff measure; homogeneous measure},
language = {eng},
number = {3},
pages = {839-863},
publisher = {Association des Annales de l’institut Fourier},
title = {An analogue of the Variational Principle for group and pseudogroup actions},
url = {http://eudml.org/doc/275594},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Biś, Andrzej
TI - An analogue of the Variational Principle for group and pseudogroup actions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 839
EP - 863
AB - We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational Principle for group and pseudogroup actions which allows us to study local dynamics of foliations.
LA - eng
KW - variational principle; topological entropy; Carathéodory structures; Carathéodory measures and dimensions; local measure entropy; pseudogroups; foliations; Hausdorff measure; homogeneous measure
UR - http://eudml.org/doc/275594
ER -
References
top- J. A. Álvarez López, A. Candel, Equicontinuous foliated spaces, Math. Z. 263 (2009), 725-774 Zbl1177.53026MR2551597
- Luigi Ambrosio, Paolo Tilli, Topics on analysis in metric spaces, 25 (2004), Oxford University Press, Oxford Zbl1080.28001MR2039660
- Andrzej Biś, Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst. 11 (2004), 639-648 Zbl1063.37003MR2083436
- Andrzej Biś, Mariusz Urbański, Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8 (2006), 63-71 Zbl1139.37006MR2244617
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414 Zbl0212.29201MR274707
- Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136 Zbl0274.54030MR338317
- M. Brin, A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981) 1007 (1983), 30-38, Springer, Berlin Zbl0533.58020MR730261
- A. Bufetov, Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems 5 (1999), 137-143 Zbl0949.37001MR1681003
- Ronald R. Coifman, Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, (1971), Springer-Verlag, Berlin Zbl0224.43006MR499948
- Kenneth Falconer, Techniques in fractal geometry, (1997), John Wiley & Sons Ltd., Chichester Zbl0869.28003MR1449135
- Shmuel Friedland, Entropy of graphs, semigroups and groups, Ergodic theory of actions (Warwick, 1993–1994) 228 (1996), 319-343, Cambridge Univ. Press, Cambridge Zbl0878.54025MR1411226
- É. Ghys, R. Langevin, P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105-142 Zbl0666.57021MR926526
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, (2007), Birkhäuser Boston Inc., Boston, MA Zbl1113.53001MR2307192
- André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367-397 Zbl0122.40702MR189060
- André Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque (1984), 70-97 Zbl0562.57012
- André Haefliger, Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984) 131 (1985), 174-197, Pitman, Boston, MA Zbl0656.58042MR864868
- Piotr Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) 338 (2003), 173-218, Amer. Math. Soc., Providence, RI Zbl1048.46033MR2039955
- Juha Heinonen, Lectures on analysis on metric spaces, (2001), Springer-Verlag, New York Zbl0985.46008MR1800917
- Jouni Luukkainen, Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), 531-534 Zbl0897.28007MR1443161
- Ji-Hua Ma, Zhi-Ying Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci. Paris 346 (2008), 503-507 Zbl1138.37007MR2412786
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, 44 (1995), Cambridge University Press, Cambridge Zbl0819.28004MR1333890
- R. Daniel Mauldin, Mariusz Urbański, Graph directed Markov systems, 148 (2003), Cambridge University Press, Cambridge Zbl1033.37025MR2003772
- Deane Montgomery, Leo Zippin, Topological transformation groups, (1955), Interscience Publishers, New York-London Zbl0068.01904MR73104
- Yakov B. Pesin, Dimension Type Characteristics for Invariant Sets of Dynamical Systems, Russian Math. Surveys 43 (1988), 111-151 Zbl0684.58024MR969568
- Yakov B. Pesin, Dimension theory in dynamical systems, (1997), University of Chicago Press, Chicago, IL Zbl0895.58033MR1489237
- Hiroki Sumi, Skew product maps related to finitely generated rational semigroups, Nonlinearity 13 (2000), 995-1019 Zbl0959.30014MR1767945
- A .L. Vol’berg, S. V. Konyagin, There is a homogeneous measure on any compact subset of , Soviet Math. Dokl. 30 (1984), 453-456 Zbl0598.28010
- A .L. Vol’berg, S. V. Konyagin, On measure with the doubling condition, Math. USSR-Izv. 30 (1988), 629-638 Zbl0727.28012
- P. Walczak, Dynamics of Foliations, Groups and Pseudogroups, 64 (2004), Birkhäuser, Basel Zbl1084.37022MR2056374
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.