Coefficient inequality for transforms of parabolic starlike and uniformly convex functions
D. Vamshee Krishna[1]; B. Venkateswarlu[1]; T. RamReddy[2]
- [1] Department of Mathematics GIT, GITAM University Visakhapatnam- 530 045, A.P., India.
- [2] Department of Mathematics, Kakatiya University, Warangal- 506 009, A.P., India.
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 2, page 39-56
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Abubaker, M. Darus, Hankel Determinant for a class of analytic functions involving a generalized linear differential operators, Int. J. Pure Appl. Math. 69(4) (2011), 429-435 Zbl1220.30011MR2847841
- J. W. Alexnader, Functions which map the interior of the unit circle upon simple regions, Annal. of. Math. (2)17 (1915), 12-22 MR1503516
- R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(second series) 26(1) (2003), 63-71 Zbl1185.30010MR2055766
- R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci. 4 (2005), 561-570 Zbl1077.30011MR2172395
- R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, The Fekete-Szeg coefficient functional for transforms of analytic functions, Bull. Iran. Math. Soc. 35(2) (2009), 119-142 Zbl1193.30006MR2642930
- R. M. Ali, V. Singh, Coefficients of parabolic starlike functions of order , (1995), 23-36, World Sci. Publ. River Edge, New Jersey Zbl0874.30007MR1415158
- P. L. Duren, Univalent functions, (1983), 259, Grundlehren der Mathematischen Wissenschaften, New York, Springer-verlag XIV, 328 Zbl0514.30001MR708494
- R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107(6) (2000), 557-560 Zbl0985.15006MR1767065
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1) (1991), 87-92 Zbl0744.30010MR1145573
- U. Grenander, G. Szegő, Toeplitz forms and their applications, (1984), Second edition. Chelsea Publishing Co., New York Zbl0611.47018MR890515
- A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequl. Pure Appl. Math. 7(2) (2006), 1-5 Zbl1134.30310MR2221331
- A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., (Ruse) 4 (no. 13-16) (2007), 619-625 Zbl1137.30308MR2370200
- J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (1) (2001), 1-11 Zbl0978.15022MR1848942
- R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in , Proc. Amer. Math. Soc. 87 (1983), 251-257 Zbl0488.30010MR681830
- W. C. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(2) (1992), 165-175 Zbl0760.30004MR1182182
- J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean - Valent functions, Trans. Amer. Math. Soc. 223(2) (1992), 337-346 Zbl0346.30012MR422607
- K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl. 28(8) (1983), 731-739 Zbl0524.30008MR725316
- Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122 Zbl0138.29801MR185105
- Ch. Pommerenke, Univalent functions, (1975), Vandenhoeck and Ruprecht, Gottingen Zbl0298.30014MR507768
- F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie - Sklodowska Sect. A. 47 (1993), 123-134 Zbl0879.30004MR1344982
- B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, (2005), AMS Colloquium Publ. 54, Part 1, American Mathematical Society, Providence, RI Zbl1082.42021MR2105088
- D. VamsheeKrishna, T. RamReddy, Coefficient inequality for uniformly convex functions of order , J. Adv. Res. Pure Math. 5(1) (2013), 25-41 MR3020966