Coefficient inequality for transforms of parabolic starlike and uniformly convex functions
D. Vamshee Krishna[1]; B. Venkateswarlu[1]; T. RamReddy[2]
- [1] Department of Mathematics GIT, GITAM University Visakhapatnam- 530 045, A.P., India.
- [2] Department of Mathematics, Kakatiya University, Warangal- 506 009, A.P., India.
Annales mathématiques Blaise Pascal (2014)
- Volume: 21, Issue: 2, page 39-56
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topVamshee Krishna, D., Venkateswarlu, B., and RamReddy, T.. "Coefficient inequality for transforms of parabolic starlike and uniformly convex functions." Annales mathématiques Blaise Pascal 21.2 (2014): 39-56. <http://eudml.org/doc/275600>.
@article{VamsheeKrishna2014,
abstract = {The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the $k^\{th\}$ root transform $\left[ f(z ^k ) \right] ^\{\frac\{1\}\{k\}\}$ of normalized analytic function $f(z)$ belonging to parabolic starlike and uniformly convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.},
affiliation = {Department of Mathematics GIT, GITAM University Visakhapatnam- 530 045, A.P., India.; Department of Mathematics GIT, GITAM University Visakhapatnam- 530 045, A.P., India.; Department of Mathematics, Kakatiya University, Warangal- 506 009, A.P., India.},
author = {Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Analytic function; parabolic starlike and uniformly convex functions; upper bound; second Hankel functional; positive real function; Toeplitz determinants; parabolic star-like functions; uniformly convex functions},
language = {eng},
month = {7},
number = {2},
pages = {39-56},
publisher = {Annales mathématiques Blaise Pascal},
title = {Coefficient inequality for transforms of parabolic starlike and uniformly convex functions},
url = {http://eudml.org/doc/275600},
volume = {21},
year = {2014},
}
TY - JOUR
AU - Vamshee Krishna, D.
AU - Venkateswarlu, B.
AU - RamReddy, T.
TI - Coefficient inequality for transforms of parabolic starlike and uniformly convex functions
JO - Annales mathématiques Blaise Pascal
DA - 2014/7//
PB - Annales mathématiques Blaise Pascal
VL - 21
IS - 2
SP - 39
EP - 56
AB - The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the $k^{th}$ root transform $\left[ f(z ^k ) \right] ^{\frac{1}{k}}$ of normalized analytic function $f(z)$ belonging to parabolic starlike and uniformly convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.
LA - eng
KW - Analytic function; parabolic starlike and uniformly convex functions; upper bound; second Hankel functional; positive real function; Toeplitz determinants; parabolic star-like functions; uniformly convex functions
UR - http://eudml.org/doc/275600
ER -
References
top- A. Abubaker, M. Darus, Hankel Determinant for a class of analytic functions involving a generalized linear differential operators, Int. J. Pure Appl. Math. 69(4) (2011), 429-435 Zbl1220.30011MR2847841
- J. W. Alexnader, Functions which map the interior of the unit circle upon simple regions, Annal. of. Math. (2)17 (1915), 12-22 MR1503516
- R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(second series) 26(1) (2003), 63-71 Zbl1185.30010MR2055766
- R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci. 4 (2005), 561-570 Zbl1077.30011MR2172395
- R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, The Fekete-Szeg coefficient functional for transforms of analytic functions, Bull. Iran. Math. Soc. 35(2) (2009), 119-142 Zbl1193.30006MR2642930
- R. M. Ali, V. Singh, Coefficients of parabolic starlike functions of order , (1995), 23-36, World Sci. Publ. River Edge, New Jersey Zbl0874.30007MR1415158
- P. L. Duren, Univalent functions, (1983), 259, Grundlehren der Mathematischen Wissenschaften, New York, Springer-verlag XIV, 328 Zbl0514.30001MR708494
- R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107(6) (2000), 557-560 Zbl0985.15006MR1767065
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1) (1991), 87-92 Zbl0744.30010MR1145573
- U. Grenander, G. Szegő, Toeplitz forms and their applications, (1984), Second edition. Chelsea Publishing Co., New York Zbl0611.47018MR890515
- A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequl. Pure Appl. Math. 7(2) (2006), 1-5 Zbl1134.30310MR2221331
- A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., (Ruse) 4 (no. 13-16) (2007), 619-625 Zbl1137.30308MR2370200
- J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (1) (2001), 1-11 Zbl0978.15022MR1848942
- R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in , Proc. Amer. Math. Soc. 87 (1983), 251-257 Zbl0488.30010MR681830
- W. C. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(2) (1992), 165-175 Zbl0760.30004MR1182182
- J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean - Valent functions, Trans. Amer. Math. Soc. 223(2) (1992), 337-346 Zbl0346.30012MR422607
- K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl. 28(8) (1983), 731-739 Zbl0524.30008MR725316
- Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122 Zbl0138.29801MR185105
- Ch. Pommerenke, Univalent functions, (1975), Vandenhoeck and Ruprecht, Gottingen Zbl0298.30014MR507768
- F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie - Sklodowska Sect. A. 47 (1993), 123-134 Zbl0879.30004MR1344982
- B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, (2005), AMS Colloquium Publ. 54, Part 1, American Mathematical Society, Providence, RI Zbl1082.42021MR2105088
- D. VamsheeKrishna, T. RamReddy, Coefficient inequality for uniformly convex functions of order , J. Adv. Res. Pure Math. 5(1) (2013), 25-41 MR3020966
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.