The cubic nonlinear Dirac equation
- [1] SAPIENZA — Università di Roma, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185 Roma, Italy
Journées Équations aux dérivées partielles (2012)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topCacciafesta, Federico. "The cubic nonlinear Dirac equation." Journées Équations aux dérivées partielles (2012): 1-10. <http://eudml.org/doc/275601>.
@article{Cacciafesta2012,
abstract = {We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in $H^1$ with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.},
affiliation = {SAPIENZA — Università di Roma, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185 Roma, Italy},
author = {Cacciafesta, Federico},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The cubic nonlinear Dirac equation},
url = {http://eudml.org/doc/275601},
year = {2012},
}
TY - JOUR
AU - Cacciafesta, Federico
TI - The cubic nonlinear Dirac equation
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in $H^1$ with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.
LA - eng
UR - http://eudml.org/doc/275601
ER -
References
top- Federico Cacciafesta. Global small solutions to the critical radial Dirac equation with potential. Nonlinear Analysis, 74 (2011), pp. 6060-6073. Zbl1230.35111MR2833377
- Federico Cacciafesta and Piero D’Ancona. Endpoint estimates and global existence for the nonlinear Dirac equation with a potential. http://arxiv.org/abs/1103.4014. Zbl1260.35159
- João-Paulo Dias and Mário Figueira. Global existence of solutions with small initial data in for the massive nonlinear Dirac equations in three space dimensions. Boll. Un. Mat. Ital. B (7), 1(3):861–874, 1987. Zbl0637.35014MR916298
- Miguel Escobedo and Luis Vega. A semilinear Dirac equation in for . SIAM J. Math. Anal., 28(2):338–362, 1997. Zbl0877.35028MR1434039
- Daoyuan Fang and Chengbo Wang. Some remarks on Strichartz estimates for homogeneous wave equation. Nonlinear Anal., 65(3):697–706, 2006. Zbl1096.35026MR2231083
- Daoyuan Fang and Chengbo Wang. Weighted Strichartz estimates with angular regularity and their applications. 2008. Zbl1226.35008
- Chengbo Wang Jin-Cheng Jiang and Xin Yu. Generalized and weighted strichartz estimates. 2010. Zbl1264.35011
- Sergiu Klainerman and Matei Machedon. Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math., 46(9):1221–1268, 1993. Zbl0803.35095MR1231427
- Shuji Machihara, Makoto Nakamura, Kenji Nakanishi, and Tohru Ozawa. Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal., 219(1):1–20, 2005. Zbl1060.35025MR2108356
- Shuji Machihara, Makoto Nakamura, and Tohru Ozawa. Small global solutions for nonlinear Dirac equations. Differential Integral Equations, 17(5-6):623–636, 2004. Zbl1174.35452MR2054938
- Yves Moreau. Existence de solutions avec petite donnée initiale dans pour une équation de Dirac non linéaire. Portugal. Math., 46(suppl.):553–565, 1989. Workshop on Hyperbolic Systems and Mathematical Physics (Lisbon, 1988). Zbl0734.35097MR1080773
- Branko Najman. The nonrelativistic limit of the nonlinear Dirac equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 9(1):3–12, 1992. Zbl0746.35036MR1151464
- Michael Reed. Abstract non-linear wave equations. Lecture Notes in Mathematics, Vol. 507. Springer-Verlag, Berlin, 1976. Zbl0317.35002MR605679
- Jacob Sterbenz Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. 2005, no. 4, 187Ð231. Zbl1072.35048MR2128434
- Bernd Thaller. The Dirac equation. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. Zbl0765.47023MR1219537
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.