The cubic nonlinear Dirac equation

Federico Cacciafesta[1]

  • [1] SAPIENZA — Università di Roma, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185 Roma, Italy

Journées Équations aux dérivées partielles (2012)

  • page 1-10
  • ISSN: 0752-0360

Abstract

top
We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in H 1 with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.

How to cite

top

Cacciafesta, Federico. "The cubic nonlinear Dirac equation." Journées Équations aux dérivées partielles (2012): 1-10. <http://eudml.org/doc/275601>.

@article{Cacciafesta2012,
abstract = {We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in $H^1$ with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.},
affiliation = {SAPIENZA — Università di Roma, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185 Roma, Italy},
author = {Cacciafesta, Federico},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The cubic nonlinear Dirac equation},
url = {http://eudml.org/doc/275601},
year = {2012},
}

TY - JOUR
AU - Cacciafesta, Federico
TI - The cubic nonlinear Dirac equation
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - We present some results obtained in collaboration with prof. Piero D’Ancona concerning global existence for the 3D cubic non linear massless Dirac equation with a potential for small initial data in $H^1$ with slight additional assumptions. The new crucial tool is given by the proof of some refined endpoint Strichartz estimates.
LA - eng
UR - http://eudml.org/doc/275601
ER -

References

top
  1. Federico Cacciafesta. Global small solutions to the critical radial Dirac equation with potential. Nonlinear Analysis, 74 (2011), pp. 6060-6073. Zbl1230.35111MR2833377
  2. Federico Cacciafesta and Piero D’Ancona. Endpoint estimates and global existence for the nonlinear Dirac equation with a potential. http://arxiv.org/abs/1103.4014. Zbl1260.35159
  3. João-Paulo Dias and Mário Figueira. Global existence of solutions with small initial data in H s for the massive nonlinear Dirac equations in three space dimensions. Boll. Un. Mat. Ital. B (7), 1(3):861–874, 1987. Zbl0637.35014MR916298
  4. Miguel Escobedo and Luis Vega. A semilinear Dirac equation in H s ( R 3 ) for s &gt; 1 . SIAM J. Math. Anal., 28(2):338–362, 1997. Zbl0877.35028MR1434039
  5. Daoyuan Fang and Chengbo Wang. Some remarks on Strichartz estimates for homogeneous wave equation. Nonlinear Anal., 65(3):697–706, 2006. Zbl1096.35026MR2231083
  6. Daoyuan Fang and Chengbo Wang. Weighted Strichartz estimates with angular regularity and their applications. 2008. Zbl1226.35008
  7. Chengbo Wang Jin-Cheng Jiang and Xin Yu. Generalized and weighted strichartz estimates. 2010. Zbl1264.35011
  8. Sergiu Klainerman and Matei Machedon. Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math., 46(9):1221–1268, 1993. Zbl0803.35095MR1231427
  9. Shuji Machihara, Makoto Nakamura, Kenji Nakanishi, and Tohru Ozawa. Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal., 219(1):1–20, 2005. Zbl1060.35025MR2108356
  10. Shuji Machihara, Makoto Nakamura, and Tohru Ozawa. Small global solutions for nonlinear Dirac equations. Differential Integral Equations, 17(5-6):623–636, 2004. Zbl1174.35452MR2054938
  11. Yves Moreau. Existence de solutions avec petite donnée initiale dans H 2 pour une équation de Dirac non linéaire. Portugal. Math., 46(suppl.):553–565, 1989. Workshop on Hyperbolic Systems and Mathematical Physics (Lisbon, 1988). Zbl0734.35097MR1080773
  12. Branko Najman. The nonrelativistic limit of the nonlinear Dirac equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 9(1):3–12, 1992. Zbl0746.35036MR1151464
  13. Michael Reed. Abstract non-linear wave equations. Lecture Notes in Mathematics, Vol. 507. Springer-Verlag, Berlin, 1976. Zbl0317.35002MR605679
  14. Jacob Sterbenz Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. 2005, no. 4, 187Ð231. Zbl1072.35048MR2128434
  15. Bernd Thaller. The Dirac equation. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. Zbl0765.47023MR1219537

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.