Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
Sergey Mozgovoy[1]; Markus Reineke[2]
- [1] School of Mathematics, Trinity College Dublin College Green, Dublin 2, Ireland
- [2] Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal Gaußstr. 20, D-42097 Wuppertal, Deutschland
Journal de l’École polytechnique — Mathématiques (2014)
- Volume: 1, page 117-146
- ISSN: 2270-518X
Access Full Article
topAbstract
topHow to cite
topMozgovoy, Sergey, and Reineke, Markus. "Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing." Journal de l’École polytechnique — Mathématiques 1 (2014): 117-146. <http://eudml.org/doc/275605>.
@article{Mozgovoy2014,
abstract = {In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.},
affiliation = {School of Mathematics, Trinity College Dublin College Green, Dublin 2, Ireland; Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal Gaußstr. 20, D-42097 Wuppertal, Deutschland},
author = {Mozgovoy, Sergey, Reineke, Markus},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Stable pairs; vector bundles; wall-crossing formulas; higher zeta functions; stable pairs; vector bundles on a curve; moduli spaces; motivic invariants},
language = {eng},
pages = {117-146},
publisher = {École polytechnique},
title = {Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing},
url = {http://eudml.org/doc/275605},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Mozgovoy, Sergey
AU - Reineke, Markus
TI - Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 117
EP - 146
AB - In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.
LA - eng
KW - Stable pairs; vector bundles; wall-crossing formulas; higher zeta functions; stable pairs; vector bundles on a curve; moduli spaces; motivic invariants
UR - http://eudml.org/doc/275605
ER -
References
top- M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615 Zbl0509.14014MR702806
- K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. in Math. 212 (2007), 617-644 Zbl1138.14014MR2329314
- A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories, 188 no. 883 (2007), American Mathematical Society, Providence, RI Zbl1124.18005MR2327478
- S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1991), 169-213 Zbl0697.32014MR1085139
- S. B. Bradlow, O. García-Prada, Stable triples, equivariant bundles and dimensional reduction, Math. Ann. 304 (1996), 225-252 Zbl0852.32016MR1371765
- U. V. Desale, S. Ramanan, Poincaré polynomials of the variety of stable bundles, Math. Ann. 216 (1975), 233-244 Zbl0317.14005MR379497
- O. García-Prada, Dimensional reduction of stable bundles, vortices and stable pairs, Internat. J. Math. 5 (1994), 1-52 Zbl0799.32022MR1265143
- O. García-Prada, J. Heinloth, The -genus of the moduli space of -Higgs bundles on a curve (for degree coprime to ), Duke Math. J. 162 (2013), 2731-2749 Zbl1300.14013MR3127812
- O. Garcia-Prada, Heinloth J., A. Schmitt, On the motives of moduli of chains and Higgs bundles, (2011) Zbl1316.14060
- P. B. Gothen, A. D. King, Homological algebra of twisted quiver bundles, J. London Math. Soc. (2) 71 (2005), 85-99 Zbl1095.14012MR2108248
- G. Harder, M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248 Zbl0324.14006MR364254
- D. Huybrechts, M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom. 4 (1995), 67-104 Zbl0839.14023MR1299005
- M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, (2008) Zbl1248.14060
- G. Laumon, M. Rapoport, The Langlands lemma and the Betti numbers of stacks of -bundles on a curve, Internat. J. Math. 7 (1996), 29-45 Zbl0871.14028MR1369904
- S. Mozgovoy, Poincaré polynomials of moduli spaces of stable bundles over curves, Manuscripta Math. 131 (2010), 63-86 Zbl1194.14053MR2574992
- V. Muñoz, Hodge polynomials of the moduli spaces of rank 3 pairs, Geometriae Dedicata 136 (2008), 17-46 Zbl1157.14018MR2443341
- V. Muñoz, A. Oliveira, J. Sánchez, Motives and the Hodge Conjecture for moduli spaces of pairs, (2012) Zbl1325.14038MR2443341
- V. Muñoz, D. Ortega, M.-J. Vázquez-Gallo, Hodge polynomials of the moduli spaces of pairs, Internat. J. Math. 18 (2007), 695-721 Zbl1120.14024MR2337400
- M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), 349-368 Zbl1043.17010MR1974891
- M. Reineke, Counting rational points of quiver moduli, Internat. Math. Res. Notices 17 (2006) Zbl1113.14018MR2250021
- A. Schmitt, Moduli problems of sheaves associated with oriented trees, Algebr. Represent. Theory 6 (2003), 1-32 Zbl1033.14009MR1960511
- M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317-353 Zbl0882.14003MR1273268
- L. Weng, Special Uniformity of Zeta Functions I. Geometric Aspect, (2012)
- L. Weng, Zeta Functions for Elliptic Curves I. Counting Bundles, (2012)
- L. Weng, Zeta functions for function fields, (2012)
- D. Zagier, Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry 9 (1996), 445-462, Bar-Ilan Univ., Ramat Gan Zbl0854.14020MR1360519
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.