Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing

Sergey Mozgovoy[1]; Markus Reineke[2]

  • [1] School of Mathematics, Trinity College Dublin College Green, Dublin 2, Ireland
  • [2] Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal Gaußstr. 20, D-42097 Wuppertal, Deutschland

Journal de l’École polytechnique — Mathématiques (2014)

  • Volume: 1, page 117-146
  • ISSN: 2270-518X

Abstract

top
In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.

How to cite

top

Mozgovoy, Sergey, and Reineke, Markus. "Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing." Journal de l’École polytechnique — Mathématiques 1 (2014): 117-146. <http://eudml.org/doc/275605>.

@article{Mozgovoy2014,
abstract = {In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.},
affiliation = {School of Mathematics, Trinity College Dublin College Green, Dublin 2, Ireland; Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität Wuppertal Gaußstr. 20, D-42097 Wuppertal, Deutschland},
author = {Mozgovoy, Sergey, Reineke, Markus},
journal = {Journal de l’École polytechnique — Mathématiques},
keywords = {Stable pairs; vector bundles; wall-crossing formulas; higher zeta functions; stable pairs; vector bundles on a curve; moduli spaces; motivic invariants},
language = {eng},
pages = {117-146},
publisher = {École polytechnique},
title = {Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing},
url = {http://eudml.org/doc/275605},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Mozgovoy, Sergey
AU - Reineke, Markus
TI - Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing
JO - Journal de l’École polytechnique — Mathématiques
PY - 2014
PB - École polytechnique
VL - 1
SP - 117
EP - 146
AB - In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.
LA - eng
KW - Stable pairs; vector bundles; wall-crossing formulas; higher zeta functions; stable pairs; vector bundles on a curve; moduli spaces; motivic invariants
UR - http://eudml.org/doc/275605
ER -

References

top
  1. M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615 Zbl0509.14014MR702806
  2. K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. in Math. 212 (2007), 617-644 Zbl1138.14014MR2329314
  3. A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories, 188 no. 883 (2007), American Mathematical Society, Providence, RI Zbl1124.18005MR2327478
  4. S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1991), 169-213 Zbl0697.32014MR1085139
  5. S. B. Bradlow, O. García-Prada, Stable triples, equivariant bundles and dimensional reduction, Math. Ann. 304 (1996), 225-252 Zbl0852.32016MR1371765
  6. U. V. Desale, S. Ramanan, Poincaré polynomials of the variety of stable bundles, Math. Ann. 216 (1975), 233-244 Zbl0317.14005MR379497
  7. O. García-Prada, Dimensional reduction of stable bundles, vortices and stable pairs, Internat. J. Math. 5 (1994), 1-52 Zbl0799.32022MR1265143
  8. O. García-Prada, J. Heinloth, The y -genus of the moduli space of PGL n -Higgs bundles on a curve (for degree coprime to n ), Duke Math. J. 162 (2013), 2731-2749 Zbl1300.14013MR3127812
  9. O. Garcia-Prada, Heinloth J., A. Schmitt, On the motives of moduli of chains and Higgs bundles, (2011) Zbl1316.14060
  10. P. B. Gothen, A. D. King, Homological algebra of twisted quiver bundles, J. London Math. Soc. (2) 71 (2005), 85-99 Zbl1095.14012MR2108248
  11. G. Harder, M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248 Zbl0324.14006MR364254
  12. D. Huybrechts, M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom. 4 (1995), 67-104 Zbl0839.14023MR1299005
  13. M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, (2008) Zbl1248.14060
  14. G. Laumon, M. Rapoport, The Langlands lemma and the Betti numbers of stacks of G -bundles on a curve, Internat. J. Math. 7 (1996), 29-45 Zbl0871.14028MR1369904
  15. S. Mozgovoy, Poincaré polynomials of moduli spaces of stable bundles over curves, Manuscripta Math. 131 (2010), 63-86 Zbl1194.14053MR2574992
  16. V. Muñoz, Hodge polynomials of the moduli spaces of rank 3 pairs, Geometriae Dedicata 136 (2008), 17-46 Zbl1157.14018MR2443341
  17. V. Muñoz, A. Oliveira, J. Sánchez, Motives and the Hodge Conjecture for moduli spaces of pairs, (2012) Zbl1325.14038MR2443341
  18. V. Muñoz, D. Ortega, M.-J. Vázquez-Gallo, Hodge polynomials of the moduli spaces of pairs, Internat. J. Math. 18 (2007), 695-721 Zbl1120.14024MR2337400
  19. M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), 349-368 Zbl1043.17010MR1974891
  20. M. Reineke, Counting rational points of quiver moduli, Internat. Math. Res. Notices 17 (2006) Zbl1113.14018MR2250021
  21. A. Schmitt, Moduli problems of sheaves associated with oriented trees, Algebr. Represent. Theory 6 (2003), 1-32 Zbl1033.14009MR1960511
  22. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317-353 Zbl0882.14003MR1273268
  23. L. Weng, Special Uniformity of Zeta Functions I. Geometric Aspect, (2012) 
  24. L. Weng, Zeta Functions for Elliptic Curves I. Counting Bundles, (2012) 
  25. L. Weng, Zeta functions for function fields, (2012) 
  26. D. Zagier, Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry 9 (1996), 445-462, Bar-Ilan Univ., Ramat Gan Zbl0854.14020MR1360519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.