Thin vortex tubes in the stationary Euler equation

Alberto Enciso[1]; Daniel Peralta-Salas[1]

  • [1] Instituto de Ciencias Matemáticas Consejo Superior de Investigaciones Científicas 28049 Madrid, Spain

Journées Équations aux dérivées partielles (2013)

  • Volume: 192, Issue: 1, page 1-13
  • ISSN: 0752-0360

Abstract

top
In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in 3 with a prescribed set of (possibly knotted and linked) thin vortex tubes.

How to cite

top

Enciso, Alberto, and Peralta-Salas, Daniel. "Thin vortex tubes in the stationary Euler equation." Journées Équations aux dérivées partielles 192.1 (2013): 1-13. <http://eudml.org/doc/275609>.

@article{Enciso2013,
abstract = {In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in $\mathbb\{R\}^3$ with a prescribed set of (possibly knotted and linked) thin vortex tubes.},
affiliation = {Instituto de Ciencias Matemáticas Consejo Superior de Investigaciones Científicas 28049 Madrid, Spain; Instituto de Ciencias Matemáticas Consejo Superior de Investigaciones Científicas 28049 Madrid, Spain},
author = {Enciso, Alberto, Peralta-Salas, Daniel},
journal = {Journées Équations aux dérivées partielles},
keywords = {level sets; Laplace equation; global approximation; Green function},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Thin vortex tubes in the stationary Euler equation},
url = {http://eudml.org/doc/275609},
volume = {192},
year = {2013},
}

TY - JOUR
AU - Enciso, Alberto
AU - Peralta-Salas, Daniel
TI - Thin vortex tubes in the stationary Euler equation
JO - Journées Équations aux dérivées partielles
PY - 2013
PB - Groupement de recherche 2434 du CNRS
VL - 192
IS - 1
SP - 1
EP - 13
AB - In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in $\mathbb{R}^3$ with a prescribed set of (possibly knotted and linked) thin vortex tubes.
LA - eng
KW - level sets; Laplace equation; global approximation; Green function
UR - http://eudml.org/doc/275609
ER -

References

top
  1. V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319–361. Zbl0148.45301MR202082
  2. V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer, New York, 1999. Zbl0902.76001MR1612569
  3. D. Córdoba, C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Comm. Math. Phys. 222 (2001) 293–298. Zbl0999.76020MR1859600
  4. J. Deng, T.Y. Hou, X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow. Comm. PDE 30 (2005) 225–243. Zbl1142.35549MR2131052
  5. A. Enciso, D. Peralta-Salas, Knots and links in steady solutions of the Euler equation, Ann. of Math. 175 (2012) 345–367. Zbl1238.35092MR2874645
  6. A. Enciso, D. Peralta-Salas, Existence of knotted vortex tubes in steady Euler flows, arXiv:1210.6271. Zbl1317.35184
  7. A. Enciso, D. Peralta-Salas, Non-existence and structure for Beltrami fields with nonconstant proportionality factor, arXiv:1402.6825. Zbl06559723
  8. A. González-Enríquez, R. de la Llave, Analytic smoothing of geometric maps with applications to KAM theory, J. Differential Equations 245 (2008) 1243–1298. Zbl1160.37024MR2436830
  9. H. von Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858) 25–55. 
  10. D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices, Nature Phys. 9 (2013) 253–258. 
  11. R.B. Pelz, Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech. 444 (2001) 299–320. Zbl1002.76095MR1856973
  12. W. Thomson (Lord Kelvin), Vortex Statics, Proc. R. Soc. Edinburgh 9 (1875) 59–73 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011, pp. 115–128). 
  13. N. Nadirashvili, Liouville theorem for Beltrami flow, Geom. Funct. Anal. 24 (2014) 916–921. Zbl1294.35080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.