Formation of Singularities in Fluid Interfaces

Charles Fefferman

Journées Équations aux dérivées partielles (2012)

  • Volume: 28, Issue: 2, page 1-9
  • ISSN: 0752-0360

How to cite

top

Fefferman, Charles. "Formation of Singularities in Fluid Interfaces." Journées Équations aux dérivées partielles 28.2 (2012): 1-9. <http://eudml.org/doc/275621>.

@article{Fefferman2012,
author = {Fefferman, Charles},
journal = {Journées Équations aux dérivées partielles},
keywords = {interpolation; -norm; efficient algorithm},
language = {eng},
number = {2},
pages = {1-9},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Formation of Singularities in Fluid Interfaces},
url = {http://eudml.org/doc/275621},
volume = {28},
year = {2012},
}

TY - JOUR
AU - Fefferman, Charles
TI - Formation of Singularities in Fluid Interfaces
JO - Journées Équations aux dérivées partielles
PY - 2012
PB - Groupement de recherche 2434 du CNRS
VL - 28
IS - 2
SP - 1
EP - 9
LA - eng
KW - interpolation; -norm; efficient algorithm
UR - http://eudml.org/doc/275621
ER -

References

top
  1. T. Alazard, N. Burq, C. Zuilly, On the water-wave equations with surface tension, Duke Math. J. 158, 413-499 Zbl1258.35043MR2805065
  2. D. M. Ambrose, N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58, 1287-1315 Zbl1086.76004MR2162781
  3. B. Alvarez-Samaniego, D. Lannes, Large time existence for 3D water waves and asympotics, Invent. Math. 171, 485-541 Zbl1131.76012MR2372806
  4. A. Bertozzi, P. Constantin, Global regularity for vortex patches, Comm. Pure Appl. Math. 152, 19-28 Zbl0771.76014MR1207667
  5. J. T. Beale, T. Y. Hou, J. Lowengrub, Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal. 33, 1797-1843 Zbl0858.76046MR1411850
  6. A. Castro, D. Cordoba, C. Fefferman, F. Gancedo, J. Gomez-Serrano, Finite time singularities for the free boundary incompressible Euler equations Zbl1291.35199
  7. A. Castro, D. Cordoba, C. Fefferman, F. Gancedo, J. Gomez-Serrano, Finite time singularities for water waves with surface tension Zbl1328.76012
  8. A. Castro, D. Cordoba, C. Fefferman, F. Gancedo, M. Lopez-Fernandez, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Annals of Math. 175, 909-948 Zbl1267.76033MR2993754
  9. A. Castro, D. Cordoba, C. Fefferman, F. Gancedo, Breakdown of smoothness for the Muskat problem 
  10. A. Cordoba, D. Cordoba, F. Gancedo, Interface evolution: Water waves in 2D, Adv. Math. 223, 120-173 Zbl1183.35276
  11. P. Constantin, D. Cordoba, F. Gancedo, R. Strain, On the global existence for the Muskat problem, JEMS 15, 201-227 Zbl1258.35002MR2998834
  12. D. Cordoba, M. Fontelos, A. Mancho, J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proc. Nat. Acad. Sci. USA 102, 5949-5952 Zbl1135.76315MR2141918
  13. D. Cordoba, F. Gancedo, Contour dynamics of incompressible 3D fluids in a porous medium with different densities, Comm. Math. Phys. 273, 445-471 Zbl1120.76064MR2318314
  14. J. Y. Chemin, Persistance de structures géometriques dans les fluides incompressibles bidimensionels, Ann. École Norm. Sup. 26, 1-16 Zbl0779.76011MR1235440
  15. R. Caflisch, S. Howison, M. Siegel, Global existence, singular solutions and ill-posedness for the Muskat problem, Comm. Pure Appl. Math 57, 1374-1411 Zbl1062.35089MR2070208
  16. D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53, 1536-1602 Zbl1031.35116MR1780703
  17. P. Constantin, M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity 6, 393-415 Zbl0808.35104MR1223740
  18. D. Coutand, S. Shkoller, On the finite-time splash singularity for the 3D free surface Euler equqations Zbl1285.35071
  19. D. Coutand, S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc. 20, 829-930 Zbl1123.35038MR2291920
  20. J. Escher, B-V. Matioc, On the parabolicity of the Muskat problem: Well-posedness, fingering and stability results, Z. Annal. Awend 30, 193-218 Zbl1223.35199MR2793001
  21. F. Gancedo, Existence for the α -patch model and the Q G sharp front in Sobolev spaces, Adv. Math. 217, 2569-2598 Zbl1148.35099MR2397460
  22. P. Germain, N. Masmoudi, J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Annals of Math. Zbl1241.35003
  23. D. Lannes, Well-posedness of the water-waves equation, J. Amer. Math. Soc. 18, 605-654 Zbl1069.35056MR2138139
  24. H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Annals of Math. 162, 109-194 Zbl1095.35021MR2178961
  25. J. Rodrigo, On the evolution of sharp fronts for the quasigeostrophic equation, Comm. Pure Appl. Math. 58, 821-866 Zbl1073.35006MR2142632
  26. J. Shatah, C. Zeng, Geometry and a-priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math 61, 698-744 Zbl1174.76001MR2388661
  27. S. Wu, Almost global well-posedness of the 2D full water wave problem, Invent. Math. 177, 45-135 Zbl1181.35205
  28. S. Wu, Global well-posedness of the 3D full water-wave problem, Invent. Math. 184, 125-220 Zbl1221.35304
  29. S. Wu, Well-posedness in Sobolev spaces of the full water-wave problem in 2D, Invent. Math. 177, 39-72 Zbl0892.76009MR1471885
  30. S. Wu, Well-posedness in Sobolev spaces of the full water-wave problem in 3D, J. Amer. Math. Soc. 12, 445-495 Zbl0921.76017MR1641609
  31. F. Yi, Global classical solution of Muskat free boundary problem, J. Math. Anal. Appl. 288, 442-461 Zbl1038.35083MR2019452
  32. P. Zhang, Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math 61, 877-940 Zbl1158.35107MR2410409

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.