Uniform Estimates in Homogenization: Compactness Methods and Applications

Christophe Prange[1]

  • [1] Department of Mathematics The University of Chicago Eckhart Hall 325 5734 S. University Avenue Chicago, Illinois 60637, USA

Journées Équations aux dérivées partielles (2014)

  • page 1-25
  • ISSN: 0752-0360

Abstract

top
The purpose of this note is to explain how to use compactness to get uniform estimates in the homogenization of elliptic systems with or without oscillating boundary. Along with new results in this direction, we highlight some important applications to pointwise estimates of Green and Poisson kernels, to the homogenization of boundary layer systems and to the boundary control of composite materials.

How to cite

top

Prange, Christophe. "Uniform Estimates in Homogenization: Compactness Methods and Applications." Journées Équations aux dérivées partielles (2014): 1-25. <http://eudml.org/doc/275629>.

@article{Prange2014,
abstract = {The purpose of this note is to explain how to use compactness to get uniform estimates in the homogenization of elliptic systems with or without oscillating boundary. Along with new results in this direction, we highlight some important applications to pointwise estimates of Green and Poisson kernels, to the homogenization of boundary layer systems and to the boundary control of composite materials.},
affiliation = {Department of Mathematics The University of Chicago Eckhart Hall 325 5734 S. University Avenue Chicago, Illinois 60637, USA},
author = {Prange, Christophe},
journal = {Journées Équations aux dérivées partielles},
keywords = {Homogenization; compactness methods; boundary layers; potential theory; Green kernel; Poisson kernel; control of distributed systems},
language = {eng},
pages = {1-25},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Uniform Estimates in Homogenization: Compactness Methods and Applications},
url = {http://eudml.org/doc/275629},
year = {2014},
}

TY - JOUR
AU - Prange, Christophe
TI - Uniform Estimates in Homogenization: Compactness Methods and Applications
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 25
AB - The purpose of this note is to explain how to use compactness to get uniform estimates in the homogenization of elliptic systems with or without oscillating boundary. Along with new results in this direction, we highlight some important applications to pointwise estimates of Green and Poisson kernels, to the homogenization of boundary layer systems and to the boundary control of composite materials.
LA - eng
KW - Homogenization; compactness methods; boundary layers; potential theory; Green kernel; Poisson kernel; control of distributed systems
UR - http://eudml.org/doc/275629
ER -

References

top
  1. F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321-391 Zbl0162.24703MR225243
  2. S. N. Armstrong, Z. Shen, Lipschitz estimates in almost-periodic homogenization, ArXiv e-prints (2014) 
  3. S. N. Armstrong, C. K. Smart, Quantitative stochastic homogenization of convex integral functionals, ArXiv e-prints (2014) 
  4. M. Avellaneda, F.-H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math 40 (1987), 803-847 Zbl0632.35018MR910954
  5. M. Avellaneda, F.-H. Lin, Counterexamples related to high-frequency oscillation of Poisson’s kernel, Appl. Math. Optim. 15 (1987), 109-119 Zbl0662.35028MR868902
  6. M. Avellaneda, F.-H. Lin, Homogenization of elliptic problems with L p boundary data, Appl. Math. Optim. 15 (1987), 93-107 Zbl0644.35034MR868901
  7. M. Avellaneda, F.-H. Lin, Compactness methods in the theory of homogenization. II. Equations in nondivergence form, Comm. Pure Appl. Math. 42 (1989), 139-172 Zbl0645.35019MR978702
  8. M. Avellaneda, F.-H. Lin, Homogenization of Poisson’s kernel and applications to boundary control, J. Math. Pures Appl. (9) 68 (1989), 1-29 Zbl0617.35014MR985952
  9. M. Avellaneda, F.-H. Lin, L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math. 44 (1991), 897-910 Zbl0761.42008MR1127038
  10. A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, 5 (1978), North-Holland Publishing Co., Amsterdam Zbl1229.35001MR503330
  11. E. Bombieri, Regularity theory for almost minimal currents, Arch. Rational Mech. Anal. 78 (1982), 99-130 Zbl0485.49024MR648941
  12. L. A. Caffarelli, Compactness methods in free boundary problems, Comm. Partial Differential Equations 5 (1980), 427-448 Zbl0437.35070MR567780
  13. S. Choi, I. C. Kim, Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data, J. Math. Pures Appl. (9) 102 (2014), 419-448 Zbl1329.35046MR3227328
  14. D. Cioranescu, P. Donato, An Introduction to Homogenization, (1999), Oxford University Press Zbl0939.35001MR1765047
  15. E. De Giorgi, Frontiere orientate di misura minima, (1961), Editrice Tecnico Scientifica, Pisa MR179651
  16. L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986), 227-252 Zbl0627.49006MR853966
  17. W. M. Feldman, Homogenization of the oscillating Dirichlet boundary condition in general domains, J. Math. Pures Appl. (9) 101 (2014), 599-622 Zbl1293.35109MR3192425
  18. W. M. Feldman, I. Kim, P. E. Souganidis, Quantitative Homogenization of Elliptic PDE with Random Oscillatory Boundary Data, ArXiv e-prints (2014) 
  19. J. Geng, Z. Shen, Uniform Regularity Estimates in Parabolic Homogenization, ArXiv e-prints (2013) Zbl1325.35081
  20. J. Geng, Z. Shen, L. Song, Uniform W 1 , p estimates for systems of linear elasticity in a periodic medium, J. Funct. Anal. 262 (2012), 1742-1758 Zbl1236.35035MR2873858
  21. D. Gérard-Varet, The Navier wall law at a boundary with random roughness, Comm. Math. Phys. 286 (2009), 81-110 Zbl1176.35127MR2470924
  22. D. Gérard-Varet, N. Masmoudi, Relevance of the slip condition for fluid flows near an irregular boundary, Comm. Math. Phys. 295 (2010), 99-137 Zbl1193.35130MR2585993
  23. D. Gérard-Varet, N. Masmoudi, Homogenization in polygonal domains, J. Eur. Math. Soc. 13 (2011), 1477-1503 Zbl1228.35100MR2825170
  24. D. Gérard-Varet, N. Masmoudi, Homogenization and boundary layers, Acta Math. 209 (2012), 133-178 Zbl1259.35024MR2979511
  25. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, 105 (1983), Princeton University Press, Princeton, NJ Zbl0516.49003MR717034
  26. A. Gloria, S. Neukamm, F. Otto, A regularity theory for random elliptic operators, ArXiv e-prints (2014) Zbl1307.35029MR3177848
  27. C. Kenig, Weighted H p spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163 Zbl0434.42024MR556889
  28. C. Kenig, F.-H. Lin, Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc. 26 (2013), 901-937 Zbl1277.35166MR3073881
  29. C. Kenig, F.-H Lin, Z. Shen, Homogenization of Green and Neumann Functions, (2014) Zbl1300.35030
  30. C. Kenig, C. Prange, Uniform Lipschitz Estimates in Bumpy Half-Spaces, ArXiv e-prints (2014) Zbl1317.35043
  31. C. Kenig, Z. Shen, Homogenization of elliptic boundary value problems in Lipschitz domains, Math. Ann. 350 (2011), 867-917 Zbl1223.35139MR2818717
  32. C. Kenig, Zhongwei Shen, Layer potential methods for elliptic homogenization problems, Comm. Pure Appl. Math. 64 (2011), 1-44 Zbl1213.35063MR2743875
  33. J. L. Lions, Asymptotic problems in distributed systems, (1985) 
  34. S. Moskow, M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 1263-1299 Zbl0888.35011MR1489436
  35. F. Murat, L. Tartar, H -convergence, Topics in the mathematical modelling of composite materials 31 (1997), 21-43, Birkhäuser Boston, Boston, MA Zbl0920.35019MR1493039
  36. C. Prange, Asymptotic analysis of boundary layer correctors in periodic homogenization, SIAM J. Math. Anal. 45 (2013), 345-387 Zbl1270.35067MR3032981
  37. Z. Shen, W 1 , p estimates for elliptic homogenization problems in nonsmooth domains, Indiana Univ. Math. J. 57 (2008), 2283-2298 Zbl1166.35013MR2463969
  38. Z. Shen, Convergence Rates and Hölder Estimates in Almost-Periodic Homogenization of Elliptic Systems, ArXiv e-prints (2014) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.