Transience of algebraic varieties in linear groups - applications to generic Zariski density
Richard Aoun[1]
- [1] Université Paris Sud 11 Laboratoire de Mathématiques Bâtiment 425 91405 Orsay (France) Département de Mathématiques Faculté des Sciences de l’Université Saint-Joseph Campus des Sciences et Technologies B.P. 11-514 Riad El Solh Beyrouth 1107 205 (Liban)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 2049-2080
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAoun, Richard. "Transience of algebraic varieties in linear groups - applications to generic Zariski density." Annales de l’institut Fourier 63.5 (2013): 2049-2080. <http://eudml.org/doc/275633>.
@article{Aoun2013,
abstract = {We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in $SL_2(\{\mathbb\{R\}\})$ escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.},
affiliation = {Université Paris Sud 11 Laboratoire de Mathématiques Bâtiment 425 91405 Orsay (France) Département de Mathématiques Faculté des Sciences de l’Université Saint-Joseph Campus des Sciences et Technologies B.P. 11-514 Riad El Solh Beyrouth 1107 205 (Liban)},
author = {Aoun, Richard},
journal = {Annales de l’institut Fourier},
keywords = {transience; algebraic varieties; Zariski density; random matrix products; random walks; probability of return; linear groups},
language = {eng},
number = {5},
pages = {2049-2080},
publisher = {Association des Annales de l’institut Fourier},
title = {Transience of algebraic varieties in linear groups - applications to generic Zariski density},
url = {http://eudml.org/doc/275633},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Aoun, Richard
TI - Transience of algebraic varieties in linear groups - applications to generic Zariski density
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 2049
EP - 2080
AB - We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in $SL_2({\mathbb{R}})$ escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.
LA - eng
KW - transience; algebraic varieties; Zariski density; random matrix products; random walks; probability of return; linear groups
UR - http://eudml.org/doc/275633
ER -
References
top- R. Aoun, Random subgroups of linear groups are free., Duke Math. J. 160 (2011), 117-173 Zbl1239.20051MR2838353
- P. de lya Arp, R. I. Grigorchuk, T. Chekerini-Sil’berstaĭn, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Tr. Mat. Inst. Steklova 224 (1999), 68-111 Zbl0968.43002MR1721355
- M.E.B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), 383-401 Zbl0702.22010MR1047140
- Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), 1-47 Zbl0947.22003MR1437472
- Y. Benoist, Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) 26 (2000), 33-48, Math. Soc. Japan, Tokyo Zbl0960.22012MR1770716
- Y. Benoist, Convexes divisibles. I, Algebraic groups and arithmetic (2004), 339-374, Tata Inst. Fund. Res., Mumbai Zbl1084.37026MR2094116
- A. Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
- A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. (1965), 55-150 Zbl0145.17402MR207712
- A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 Zbl0238.20055MR294349
- P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, 8 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0572.60001MR886674
- J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of , Ann. of Math. (2) 167 (2008), 625-642 Zbl1216.20042MR2415383
- J. Bourgain, A. Gamburd, Expansion and random walks in - with an appendix by . Bourgain, J. Eur. Math. Soc. (JEMS) 5 (2009), 1057-1103 Zbl1193.20060MR2538500
- E. Breuillard, A Strong Tits Alternative, (2008)
- E. Breuillard, A. Gamburd, Strong uniform expansion in , (2010) Zbl1253.20051MR2746951
- P. Eymard, Moyennes invariantes et représentations unitaires, (1972), Springer-Verlag, Berlin Zbl0249.43004MR447969
- W. Fulton, J. Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
- H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428 Zbl0203.19102MR163345
- I. Ya. Goldsheid, G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian Math. Surveys 44 (1989), 11-71 Zbl0705.60012MR1040268
- Y. Guivarc’h, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990), 483-512 Zbl0715.60008MR1074315
- Y. Guivarc’h, A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), 187-242 Zbl0558.60009MR779457
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 34 (2001), American Mathematical Society, Providence, RI Zbl0993.53002MR1834454
- J.E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York Zbl0471.20029MR396773
- H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354 Zbl0092.33503MR109367
- J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883-909 Zbl0311.60018MR356192
- E. Kowalski, The large sieve and its applications, 175 (2008), Cambridge University Press, Cambridge Zbl1177.11080MR2426239
- E. Le Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) 928 (1982), 258-303, Springer, Berlin Zbl0506.60019MR669072
- G. D. Mostow, Strong rigidity of locally symmetric spaces, (1973), Princeton University Press, Princeton, N.J. Zbl0265.53039MR385004
- I. Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008), 353-379 Zbl1207.20068MR2401624
- I. Rivin, Zariski density and genericity, Int. Math. Res. Not. IMRN (2010), 3649-3657 Zbl1207.20045MR2725508
- J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220 Zbl0227.20015MR277536
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270 Zbl0236.20032MR286898
- P. Varjú, Expansion in , square-free, arXiv:1001.3664
- È. B. Vinberg, V. G. Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354 Zbl0163.16902MR208470
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.