Transience of algebraic varieties in linear groups - applications to generic Zariski density

Richard Aoun[1]

  • [1] Université Paris Sud 11 Laboratoire de Mathématiques Bâtiment 425 91405 Orsay (France) Département de Mathématiques Faculté des Sciences de l’Université Saint-Joseph Campus des Sciences et Technologies B.P. 11-514 Riad El Solh Beyrouth 1107 205 (Liban)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 5, page 2049-2080
  • ISSN: 0373-0956

Abstract

top
We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in S L 2 ( ) escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.

How to cite

top

Aoun, Richard. "Transience of algebraic varieties in linear groups - applications to generic Zariski density." Annales de l’institut Fourier 63.5 (2013): 2049-2080. <http://eudml.org/doc/275633>.

@article{Aoun2013,
abstract = {We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in $SL_2(\{\mathbb\{R\}\})$ escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.},
affiliation = {Université Paris Sud 11 Laboratoire de Mathématiques Bâtiment 425 91405 Orsay (France) Département de Mathématiques Faculté des Sciences de l’Université Saint-Joseph Campus des Sciences et Technologies B.P. 11-514 Riad El Solh Beyrouth 1107 205 (Liban)},
author = {Aoun, Richard},
journal = {Annales de l’institut Fourier},
keywords = {transience; algebraic varieties; Zariski density; random matrix products; random walks; probability of return; linear groups},
language = {eng},
number = {5},
pages = {2049-2080},
publisher = {Association des Annales de l’institut Fourier},
title = {Transience of algebraic varieties in linear groups - applications to generic Zariski density},
url = {http://eudml.org/doc/275633},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Aoun, Richard
TI - Transience of algebraic varieties in linear groups - applications to generic Zariski density
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 2049
EP - 2080
AB - We study the transience of algebraic varieties in linear groups. In particular, we show that a “non elementary” random walk in $SL_2({\mathbb{R}})$ escapes exponentially fast from every proper algebraic subvariety. We also treat the case where the random walk takes place in the real points of a semisimple split algebraic group and show such a result for a wide family of random walks.As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski dense.
LA - eng
KW - transience; algebraic varieties; Zariski density; random matrix products; random walks; probability of return; linear groups
UR - http://eudml.org/doc/275633
ER -

References

top
  1. R. Aoun, Random subgroups of linear groups are free., Duke Math. J. 160 (2011), 117-173 Zbl1239.20051MR2838353
  2. P. de lya Arp, R. I. Grigorchuk, T. Chekerini-Sil’berstaĭn, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Tr. Mat. Inst. Steklova 224 (1999), 68-111 Zbl0968.43002MR1721355
  3. M.E.B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), 383-401 Zbl0702.22010MR1047140
  4. Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), 1-47 Zbl0947.22003MR1437472
  5. Y. Benoist, Propriétés asymptotiques des groupes linéaires. II, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997) 26 (2000), 33-48, Math. Soc. Japan, Tokyo Zbl0960.22012MR1770716
  6. Y. Benoist, Convexes divisibles. I, Algebraic groups and arithmetic (2004), 339-374, Tata Inst. Fund. Res., Mumbai Zbl1084.37026MR2094116
  7. A. Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
  8. A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. (1965), 55-150 Zbl0145.17402MR207712
  9. A. Borel, J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 Zbl0238.20055MR294349
  10. P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, 8 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0572.60001MR886674
  11. J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of SL 2 ( 𝔽 p ) , Ann. of Math. (2) 167 (2008), 625-642 Zbl1216.20042MR2415383
  12. J. Bourgain, A. Gamburd, Expansion and random walks in S L d ( / p n ) I I - with an appendix by J . Bourgain, J. Eur. Math. Soc. (JEMS) 5 (2009), 1057-1103 Zbl1193.20060MR2538500
  13. E. Breuillard, A Strong Tits Alternative, (2008) 
  14. E. Breuillard, A. Gamburd, Strong uniform expansion in S L ( 2 , p ) , (2010) Zbl1253.20051MR2746951
  15. P. Eymard, Moyennes invariantes et représentations unitaires, (1972), Springer-Verlag, Berlin Zbl0249.43004MR447969
  16. W. Fulton, J. Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
  17. H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428 Zbl0203.19102MR163345
  18. I. Ya. Goldsheid, G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian Math. Surveys 44 (1989), 11-71 Zbl0705.60012MR1040268
  19. Y. Guivarc’h, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990), 483-512 Zbl0715.60008MR1074315
  20. Y. Guivarc’h, A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), 187-242 Zbl0558.60009MR779457
  21. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 34 (2001), American Mathematical Society, Providence, RI Zbl0993.53002MR1834454
  22. J.E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York Zbl0471.20029MR396773
  23. H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354 Zbl0092.33503MR109367
  24. J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883-909 Zbl0311.60018MR356192
  25. E. Kowalski, The large sieve and its applications, 175 (2008), Cambridge University Press, Cambridge Zbl1177.11080MR2426239
  26. E. Le Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) 928 (1982), 258-303, Springer, Berlin Zbl0506.60019MR669072
  27. G. D. Mostow, Strong rigidity of locally symmetric spaces, (1973), Princeton University Press, Princeton, N.J. Zbl0265.53039MR385004
  28. I. Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008), 353-379 Zbl1207.20068MR2401624
  29. I. Rivin, Zariski density and genericity, Int. Math. Res. Not. IMRN (2010), 3649-3657 Zbl1207.20045MR2725508
  30. J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220 Zbl0227.20015MR277536
  31. J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270 Zbl0236.20032MR286898
  32. P. Varjú, Expansion in SL d ( O K / I ) , I square-free, arXiv:1001.3664 
  33. È. B. Vinberg, V. G. Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354 Zbl0163.16902MR208470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.