Non-commutative Hodge structures

Claude Sabbah[1]

  • [1] École polytechnique Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS F–91128 Palaiseau cedex (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 7, page 2681-2717
  • ISSN: 0373-0956

Abstract

top
This article gives a survey of recent results on a generalization of the notion of a Hodge structure. The main example is related to the Fourier-Laplace transform of a variation of polarizable Hodge structure on the punctured affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a smooth quasi-projective variety. Variations of non-commutative Hodge structures often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt* geometry.

How to cite

top

Sabbah, Claude. "Non-commutative Hodge structures." Annales de l’institut Fourier 61.7 (2011): 2681-2717. <http://eudml.org/doc/275636>.

@article{Sabbah2011,
abstract = {This article gives a survey of recent results on a generalization of the notion of a Hodge structure. The main example is related to the Fourier-Laplace transform of a variation of polarizable Hodge structure on the punctured affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a smooth quasi-projective variety. Variations of non-commutative Hodge structures often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt* geometry.},
affiliation = {École polytechnique Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS F–91128 Palaiseau cedex (France)},
author = {Sabbah, Claude},
journal = {Annales de l’institut Fourier},
keywords = {Non-commutative Hodge structure; Fourier-Laplace transformation; Brieskorn lattice; non-commutative Hodge structure},
language = {eng},
number = {7},
pages = {2681-2717},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-commutative Hodge structures},
url = {http://eudml.org/doc/275636},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Sabbah, Claude
TI - Non-commutative Hodge structures
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 7
SP - 2681
EP - 2717
AB - This article gives a survey of recent results on a generalization of the notion of a Hodge structure. The main example is related to the Fourier-Laplace transform of a variation of polarizable Hodge structure on the punctured affine line, like the Gauss-Manin systems of a proper or tame algebraic function on a smooth quasi-projective variety. Variations of non-commutative Hodge structures often occur on the tangent bundle of Frobenius manifolds, giving rise to a tt* geometry.
LA - eng
KW - Non-commutative Hodge structure; Fourier-Laplace transformation; Brieskorn lattice; non-commutative Hodge structure
UR - http://eudml.org/doc/275636
ER -

References

top
  1. W. Balser, W. B. Jurkat, D. A. Lutz, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities. I, SIAM J. Math. Anal. 12 (1981), 691-721 Zbl0468.34024MR625827
  2. A. Borel, Chap. VI-IX, Algebraic -modules 2 (1987), 207-352, Academic Press, Boston Zbl0642.32001MR882000
  3. Eduardo Cattani, Aroldo Kaplan, Wilfried Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), 457-535 Zbl0617.14005MR840721
  4. Sergio Cecotti, Paul Fendley, Ken Intriligator, Cumrun Vafa, A new supersymmetric index, Nuclear Phys. B 386 (1992), 405-452 MR1193656
  5. Sergio Cecotti, Cumrun Vafa, Topological–anti-topological fusion, Nuclear Phys. B 367 (1991), 359-461 Zbl1136.81403MR1139739
  6. Sergio Cecotti, Cumrun Vafa, On classification of N = 2 supersymmetric theories, Comm. Math. Phys. 158 (1993), 569-644 Zbl0787.58049MR1255428
  7. P. Deligne, Lettre à B. Malgrange du 19 avril 1978, Singularités irrégulières, Correspondance et documents 5 (2007), 25-26, Société Mathématique de France, Paris Zbl1130.14001MR2387754
  8. P. Deligne, Théorie de Hodge irrégulière (mars 1984 et août 2006), Singularités irrégulières, Correspondance et documents 5 (2007), 109-114 & 115-128, Société Mathématique de France, Paris MR2387754
  9. Claus Hertling, Frobenius manifolds and moduli spaces for singularities, 151 (2002), Cambridge University Press, Cambridge Zbl1023.14018MR1924259
  10. Claus Hertling, t t * geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77-161 Zbl1040.53095MR1956595
  11. Claus Hertling, t t * geometry and mixed Hodge structures, Singularity theory and its applications 43 (2006), 73-84, Math. Soc. Japan, Tokyo Zbl1127.14300MR2313409
  12. Claus Hertling, C. Sabbah, Examples of non-commutative Hodge structures, Journal de l’Institut mathématique de Jussieu 10 (2011), 635-674 Zbl1246.14019MR2806464
  13. Claus Hertling, Christian Sevenheck, Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math. 609 (2007), 23-80 Zbl1136.32011MR2350780
  14. Claus Hertling, Christian Sevenheck, Curvature of classifying spaces for Brieskorn lattices, J. Geom. Phys. 58 (2008), 1591-1606 Zbl1160.14005MR2463812
  15. Claus Hertling, Christian Sevenheck, Twistor structures, t t * -geometry and singularity theory, From Hodge theory to integrability and TQFT tt*-geometry 78 (2008), 49-73, Amer. Math. Soc., Providence, RI Zbl1151.14304MR2483748
  16. Claus Hertling, Christian Sevenheck, Limits of families of Brieskorn lattices and compactified classifying spaces, Adv. Math. 223 (2010), 1155-1224 Zbl1190.14011MR2581368
  17. Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079 Zbl1190.14054MR2553377
  18. Hiroshi Iritani, tt*-geometry in quantum cohomology, (2009) Zbl1190.14054MR2553377
  19. D. Kaledin, Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie, Pure Appl. Math. Q. 4 (2008), 785-875 Zbl1189.14013MR2435845
  20. D. Kaledin, Motivic structures in non-commutative geometry, (2010) Zbl1245.14005MR2827805
  21. Masaki Kashiwara, The asymptotic behavior of a variation of polarized Hodge structure, Publ. Res. Inst. Math. Sci. 21 (1985), 853-875 Zbl0594.14012MR817170
  22. Masaki Kashiwara, D -modules and microlocal calculus, 217 (2003), American Mathematical Society, Providence, RI Zbl1017.32012MR1943036
  23. N. Katz, Exponential sums and differential equations, 124 (1990), Princeton University Press, Princeton, NJ Zbl0731.14008MR1081536
  24. N. Katz, Rigid local systems, 139 (1996), Princeton University Press, Princeton, NJ Zbl0864.14013MR1366651
  25. Nicholas M. Katz, Gérard Laumon, Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. (1985), 361-418 Zbl0603.14015MR823177
  26. L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry 78 (2008), 87-174, Amer. Math. Soc., Providence, RI Zbl1206.14009MR2483750
  27. M. Kontsevich, Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, (2010) Zbl1248.14060MR2851153
  28. Bernard Malgrange, Équations différentielles à coefficients polynomiaux, 96 (1991), Birkhäuser Boston Inc., Boston, MA Zbl0764.32001MR1117227
  29. Bernard Malgrange, Connexions méromorphes. II. Le réseau canonique, Invent. Math. 124 (1996), 367-387 Zbl0849.32003MR1369422
  30. Takuro Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D -modules, Mem. Amer. Math. Soc. 185 (2007) Zbl1259.32005
  31. Takuro Mochizuki, Holonomic 𝒟 -modules with Betti structure, (2010) Zbl1229.32012MR2605752
  32. Takuro Mochizuki, Asymptotic behaviour of variation of pure polarized TERP structures, Publications of the Research Institute for Mathematical Sciences , Kyoto Univ. 47 (2011), 419-534 Zbl1231.32013MR2849639
  33. Takuro Mochizuki, Wild harmonic bundles and wild pure twistor D -modules, Astérisque (2011), Société Mathématique de France, Paris Zbl1245.32001MR2919903
  34. Chris A. M. Peters, Joseph H. M. Steenbrink, Mixed Hodge structures, 52 (2008), Springer-Verlag, Berlin Zbl1138.14002MR2393625
  35. Claude Sabbah, Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 603-608 Zbl0967.32028MR1679978
  36. Claude Sabbah, Déformations isomonodromiques et variétés de Frobenius, (2002), EDP Sciences, Les Ulis Zbl1101.14001MR1933784
  37. Claude Sabbah, Polarizable twistor 𝒟 -modules, Astérisque (2005) Zbl1085.32014MR2156523
  38. Claude Sabbah, Hypergeometric periods for a tame polynomial, Port. Math. (N.S.) 63 (2006), 173-226 Zbl1113.14011MR2229875
  39. Claude Sabbah, Fourier-Laplace transform of a variation of polarized complex Hodge structure, J. Reine Angew. Math. 621 (2008), 123-158 Zbl1155.32012MR2431252
  40. Claude Sabbah, Wild twistor 𝒟 -modules, Algebraic analysis and around 54 (2009), 293-353, Math. Soc. Japan, Tokyo Zbl1219.32013MR2499560
  41. Claude Sabbah, Fourier-Laplace transform of a variation of polarized complex Hodge structure, II, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) 59 (2010), 289-347, Math. Soc. Japan, Tokyo Zbl1264.14011MR2683213
  42. Claude Sabbah, Introduction to Stokes structures, (2010) Zbl1260.34002MR2978128
  43. Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849-995 (1989) Zbl0691.14007MR1000123
  44. Morihiko Saito, Induced 𝒟 -modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361-387 Zbl0705.32005MR1020112
  45. Morihiko Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72 Zbl0644.32005MR1011977
  46. Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221-333 Zbl0727.14004MR1047415
  47. D. Shklyarov, Non-commutative Hodge structures: towards matching categorical and geometric examples, (2011) Zbl06303119
  48. Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770 Zbl0713.58012MR1040197
  49. Carlos T. Simpson, Nonabelian Hodge theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (1991), 747-756, Math. Soc. Japan, Tokyo Zbl0765.14005MR1159261
  50. Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), 5-95 Zbl0814.32003MR1179076
  51. Carlos T. Simpson, The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995 62 (1997), 217-281, Amer. Math. Soc., Providence, RI Zbl0914.14003MR1492538
  52. Carlos T. Simpson, Mixed twistor structures, (1997) 
  53. Carlos T. Simpson, Algebraic aspects of higher nonabelian Hodge theory, Motives, polylogarithms and Hodge theory, Part II (Irvine, CA, 1998) 3 (2002), 417-604, Int. Press, Somerville, MA Zbl1051.14008MR1978713
  54. J. H. M. Steenbrink, The spectrum of hypersurface singularities, Astérisque (1989), 11, 163-184 Zbl0725.14031MR1042806
  55. A.N. Varchenko, Asymptotic Hodge structure on the cohomology of the Milnor fiber, Math. USSR Izv. 18 (1982), 469-512 Zbl0489.14003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.