Statistical models for deformable templates in image and shape analysis

Stéphanie Allassonnière[1]; Jérémie Bigot[2]; Joan Alexis Glaunès[3]; Florian Maire[4]; Frédéric J.P. Richard[5]

  • [1] CMAP Ecole Polytechnique Route de Saclay 91128 Palaiseau FRANCE
  • [2] Institut de Mathématiques de Toulouse, CNRS UMR 5219 Université de Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 FRANCE
  • [3] MAP5 Université Paris Descartes, Sorbonne Paris Cité 45 rue des Saints-Pères 75270 Paris Cedex 06 FRANCE
  • [4] ONERA - The French Aerospace Lab F-91761 Palaiseau FRANCE
  • [5] LATP CNRS UMR 7353 Aix Marseille Université Centre de mathématiques et d’informatique 39 rue Frédéric Joliot 13453 Marseille Cedex FRANCE

Annales mathématiques Blaise Pascal (2013)

  • Volume: 20, Issue: 1, page 1-35
  • ISSN: 1259-1734

Abstract

top
High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.

How to cite

top

Allassonnière, Stéphanie, et al. "Statistical models for deformable templates in image and shape analysis." Annales mathématiques Blaise Pascal 20.1 (2013): 1-35. <http://eudml.org/doc/275647>.

@article{Allassonnière2013,
abstract = {High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.},
affiliation = {CMAP Ecole Polytechnique Route de Saclay 91128 Palaiseau FRANCE; Institut de Mathématiques de Toulouse, CNRS UMR 5219 Université de Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 FRANCE; MAP5 Université Paris Descartes, Sorbonne Paris Cité 45 rue des Saints-Pères 75270 Paris Cedex 06 FRANCE; ONERA - The French Aerospace Lab F-91761 Palaiseau FRANCE; LATP CNRS UMR 7353 Aix Marseille Université Centre de mathématiques et d’informatique 39 rue Frédéric Joliot 13453 Marseille Cedex FRANCE},
author = {Allassonnière, Stéphanie, Bigot, Jérémie, Glaunès, Joan Alexis, Maire, Florian, Richard, Frédéric J.P.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Review paper; Deformable template model; statistical analysis; review paper; deformable template model},
language = {eng},
month = {1},
number = {1},
pages = {1-35},
publisher = {Annales mathématiques Blaise Pascal},
title = {Statistical models for deformable templates in image and shape analysis},
url = {http://eudml.org/doc/275647},
volume = {20},
year = {2013},
}

TY - JOUR
AU - Allassonnière, Stéphanie
AU - Bigot, Jérémie
AU - Glaunès, Joan Alexis
AU - Maire, Florian
AU - Richard, Frédéric J.P.
TI - Statistical models for deformable templates in image and shape analysis
JO - Annales mathématiques Blaise Pascal
DA - 2013/1//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 1
SP - 1
EP - 35
AB - High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.
LA - eng
KW - Review paper; Deformable template model; statistical analysis; review paper; deformable template model
UR - http://eudml.org/doc/275647
ER -

References

top
  1. Stéphanie Allassonnière, Yali Amit, Alain Trouvé, Toward a coherent statistical framework for dense deformable template estimation, JRSS 69 (2007), 3-29 MR2301497
  2. Stéphanie Allassonnière, Estelle Kuhn, Convergent Stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation, submitted Zbl1320.62045
  3. Stéphanie Allassonnière, Estelle Kuhn, Stochastic Algorithm For Bayesian Mixture Effect Template Estimation, ESAIM Probab.Stat. 14 (2010), 382-408 Zbl1320.62045MR2795472
  4. Stéphanie Allassonnière, Estelle Kuhn, Alain Trouvé, Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images, Journal de la Société Française de Statistique 151(1) (2010), 1-16 Zbl1316.62152MR2652787
  5. Stéphanie Allassonnière, Estelle Kuhn, Alain Trouvé, Bayesian Deformable Models Building via Stochastic Approximation Algorithm: A convergence Study, Bernoulli J. 16 (2010), 641-678 Zbl1220.62101MR2730643
  6. Stéphanie Allassonnière, Alain Trouvé, Laurent Younes, Geodesic Shotting and Diffeomorphic Matching via Textured Meshes, Proc. of the Energy Minimization Methods for Computer Vision and Pattern Recognition (EMMCVPR 05) (2005), 365-381, Anand RangarajanAlan YuilleA. Y.Baba Vemuri 
  7. John Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage 38 (2007), 95-113 
  8. J-Y. Audibert, G. Charpiat, O. Faugeras, R. Keriven, Imaes Statistics based on Diffeomorphc Matching, (2005) 
  9. M. F. Beg, M. I. Miller, A. Trouvé, L Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, Int J. Comp. Vis. 61 (2005), 139-157 
  10. J. Bigot, B. Charlier, On the consistency of Fréchet means in deformable models for curve and image analysis, Electron. J. Stat. 5 (2011), 1054-1089 Zbl1274.62276MR2836769
  11. J. Bigot, C. Christophe, S. Gadat, Random Action of Compact Lie Groups and Minimax Estimation of a Mean Pattern, Information Theory, IEEE Transactions on 58 (2012), 3509-3520 MR2924381
  12. J. Bigot, S. Gadat, A deconvolution approach to estimation of a common shape in a shifted curves model, Ann. Statist. 38 (2010), 2422-2464 Zbl1202.62049MR2676894
  13. J. Bigot, F. Gamboa, M. Vimond, Estimation of translation, rotation, and scaling between noisy images using the Fourier-Mellin transform, SIAM J. Imaging Sci. 2 (2009), 614-645 Zbl1175.62067MR2519925
  14. J. Bigot, J.-M. Loubès, M. Vimond, Semiparametric estimation of shifts on compact Lie groups for image registration, Probab. Theory Related Fields (2010), 1-49 Zbl1318.62076MR2892953
  15. Jérémie Bigot, Sébastien Gadat, Jean-Michel Loubes, Statistical M-estimation and consistency in large deformable models for image warping, J. Math. Imaging Vision 34 (2009), 270-290 MR2515449
  16. O. Cappé, E. Moulines, Online EM Algorithm for Latent Data Models, J. R. Statist. Soc.B 71 (2007), 593-613 Zbl1250.62015MR2749909
  17. B. P. Carlin, S. Chib, Bayesian Model Choice via Markov Chain Monte Carlo, J. R. Statist. Soc.B 57 (1995), 473-484 Zbl0827.62027
  18. G. E. Christensen, R. D. Rabbitt, M. I. Miller, Deformable templates using large deformation kinematics, IEEE trans. Image Proc. 5 (1996), 1435-1447 
  19. Bernard Delyon, Marc Lavielle, Éric Moulines, Convergence of a stochastic approximation version of the EM algorithm, Ann. Statist. 27 (1999), 94-128 Zbl0932.62094MR1701103
  20. Stanley Durrleman, Stéphanie Allassonnière, Sarang Joshi, Sparse Adaptive Parameterization of Variability in Image Ensembles, International Journal of Computer Vision 101(1) (2013), 161-183 Zbl1259.68196
  21. Stanley Durrleman, Xavier Pennec, Alain Trouvé, Nicholas Ayache, Statistical Models on Sets of Curves and Surfaces based on Currents, MedIA 13 (2009), 793-808 
  22. Stanley Durrleman, Xavier Pennec, Alain Trouvé, Guido Guerig, Nicholas Ayache, Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets, proc. of the (2009) 
  23. James Fishbough, Stanley Durrleman, Guido Guerig, Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data, proc. of the (2011) 
  24. M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace distancié, Ann. Inst. H.Poincaré, Sect. B, Prob. et Stat. 10 (1948), 235-310 Zbl0035.20802MR27464
  25. F. Gamboa, J.-M. Loubes, E. Maza, Semi-parametric estimation of shifts, Electron. J. Stat. 1 (2007), 616-640 Zbl1141.62313MR2369028
  26. C. A. Glasbey, K. V. Mardia, A penalized likelihood approach to image warping, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), 465-514 Zbl1040.62054MR1858399
  27. J. Glaunès, M. Vaillant, M. I. Miller, Landmark Matching via Large Deformation Diffeomorphisms on the Sphere, Journal of Mathematical Imaging and Vision, MIA 2002 special 20 (2004), 179-200 MR2049789
  28. Joan Glaunès, Sarang Joshi, Template estimation form unlabeled point set data and surfaces for Computational Anatomy, Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA) (2006), 29-39, PennecX.X. 
  29. Joan Glaunès, Anqi Qiu, Michael Miller, Laurent Younes, Large Deformation Diffeomorphic Metric Curve Mapping, International Journal of Computer Vision 80 (2008), 317-336 
  30. Joan Glaunès, Alain Trouvé, Laurent Younes, Diffeomorphic Matching of Distributions: A New Approach for Unlabelled Point-Sets and Sub-Manifolds Matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2 (2004), 712-718 
  31. U. Grenander, General Pattern Theory, (1993), Oxford Science Publications Zbl0827.68098MR1270904
  32. U. Grenander, M. I. Miller, A. Srivastana, Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998), 790-802 
  33. M. Hachama, A. Desolneux, C. Cuénod, Frédéric J.P. Richard, A classifying registration technique for the estimation of enhancement curves of DCE-CT scan sequences, Medical Image Analysis 14 (2010), 185-194 
  34. M. Hachama, A. Desolneux, Frédéric J.P. Richard, A Bayesian Technique For Image Classifying Registration, IEEE Transactions on Image Processing 21 (2012), 4080-4091 MR2972401
  35. R Holm, T Ratnanather, A Trouvé, L Younes, Soliton Dynamics in Computational Anatomy, Neuroimage 23 (2004), S170-S178 
  36. S Joshi, M Miller, Landmark matching via large deformation diffeomorphisms, IEEE transactions in image processing 9 (2000), 1357-1370 Zbl0965.37065MR1808275
  37. Sarang Joshi, Brad Davis, Mathieu Jomier, Guido Gerig, Unbiased diffeomorphic atlas construction for computational anatomy, Neuroimage 23 (2004), S151-S160 
  38. Sidonie Lefebvre, Stéphanie Allassonnière, Jérémie Jakubowicz, Thomas Lasne, Éric Moulines, Aircraft classification with a low resolution infrared sensor, Machine Vision and Application Journal 24(1) (2012), 175-186 
  39. Marco Lorenzi, Nicholas Ayache, Giovanni B. Frisoni, Xavier Pennec, Mapping the effects of A β 1 - 42 levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields, Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) (2011), 663-670, Springer 
  40. Marco Lorenzi, Nicholas Ayache, Xavier Pennec, Schilds Ladder for the parallel transport of deformations in time series of images, Proceedings of Information Processing in Medical Imaging (IPMI’11) 6801 (2011), 463-474, SzekelyG.G. 
  41. F. Maire, S. efebvre, E. Moulines, R. Douc, An Online Learning Algorithm For Mixture Models Of Deformable Templates, Proc. of the :2012 IEEE Workshop on Machine Learning for Signal Processing (2012) 
  42. A. Makadia, K. Daniilidis, Rotation recovery from spherical images without correspondences, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006), 1170-1175 
  43. Stephen Marsland, Carole Twining, Constructing Diffeomorphic Representations for the Groupewise Analysis of Non-Rigid Registrations of Medical Images, IEEE Transactions on Medical Imaging 23 (2004) Zbl1152.58004
  44. I Miller, L Younes, Group action, diffeomorphism and matching: a general framework, Int. J. Comp. Vis 41 (2001), 61-84 Zbl1012.68714
  45. W. Park, D. R. Madden, D. N. Rockmore, G. S. Chirikjian, Deblurring of class-averaged images in single-particle electron microscopy, Inverse Problems 26 (2010) Zbl1192.68782MR2594372
  46. Anqi Qiu, Marilyn Albert, Laurent Younes, Michael I. Miller, Time Sequence Diffeomorphic Metric Mapping and Parallel Transport Track Time-Dependent Shape Changes, NeuroImage 45 (2009), 51-60 
  47. Frédéric J.P. Richard, Adeline Samson, Charles A. Cuenod, A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences, Statistics and Computing 19 (2009), 465-478 MR2565318
  48. Mert Sabuncu, Serdar K. Balci, Polina Golland, Discovering Modes of an Image Population through Mixture Modeling, MICCAI LNCS (2008), 381-389 
  49. D’Arcy Wentworth Thompson, On growth and form, (1915), Cambridge : University Press ; New York : Macmillan Zbl0063.07372MR128562
  50. Alain Trouvé, Infinite Dimensional Group Action and Pattern Recognition, (1995) Zbl0855.57035MR1360567
  51. C. Twinings, S. Marsland, C. Taylor, Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms, British Macine Vision Conference (2002) 
  52. A. W. van der Vaart, Asymptotic statistics, 3 (1998), Cambridge University Press, Cambridge Zbl0910.62001MR1652247
  53. Marc Vaillant, Joan Glaunès, Surface Matching via Currents, Information Processing in Medical Imaging 3565 (2005), 1-5, ChristensenGaryG. 
  54. Tom Vercauteren, Xavier Pennec, Aymeric Perchant, Nicholas Ayache, Diffeomorphic demons: Efficient non-parametric image registration., Neuroimage 45 (2009), 61-72 
  55. François-Xavier Vialard, Alain Trouvé, A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces, STIA Workshop Miccai (2010) Zbl1259.65104
  56. Myriam Vimond, Efficient estimation for a subclass of shape invariant models, Ann. Statist. 38 (2010), 1885-1912 Zbl1189.62057MR2662362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.