Regenerating hyperbolic cone 3-manifolds from dimension 2
Joan Porti[1]
- [1] Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Spain)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 1971-2015
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPorti, Joan. "Regenerating hyperbolic cone 3-manifolds from dimension 2." Annales de l’institut Fourier 63.5 (2013): 1971-2015. <http://eudml.org/doc/275653>.
@article{Porti2013,
abstract = {We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.},
affiliation = {Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Spain)},
author = {Porti, Joan},
journal = {Annales de l’institut Fourier},
keywords = {orbifold; hyperbolic cone 3-manifold; degeneration; hyperbolic polygon; perimeter; fibers},
language = {eng},
number = {5},
pages = {1971-2015},
publisher = {Association des Annales de l’institut Fourier},
title = {Regenerating hyperbolic cone 3-manifolds from dimension 2},
url = {http://eudml.org/doc/275653},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Porti, Joan
TI - Regenerating hyperbolic cone 3-manifolds from dimension 2
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1971
EP - 2015
AB - We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
LA - eng
KW - orbifold; hyperbolic cone 3-manifold; degeneration; hyperbolic polygon; perimeter; fibers
UR - http://eudml.org/doc/275653
ER -
References
top- A. Paiva Barreto, Déformation de structures hyperboliques coniques, (Thèse, Université Paul Sabatier, Toulouse, 2009)
- Michel Boileau, Bernhard Leeb, Joan Porti, Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 57-62 Zbl0976.57017MR1805628
- Michel Boileau, Bernhard Leeb, Joan Porti, Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162 (2005), 195-290 Zbl1087.57009MR2178962
- Michel Boileau, Joan Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque (2001) Zbl0971.57004MR1844891
- F. Bonahon, L. Siebenmann, The classification of Seifert fibred -orbifolds, Low-dimensional topology (Chelwood Gate, 1982) 95 (1985), 19-85, Cambridge Univ. Press, Cambridge Zbl0571.57011MR827297
- Daryl Cooper, Craig D. Hodgson, Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, 5 (2000), Mathematical Society of Japan, Tokyo Zbl0955.57014MR1778789
- Marc Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986), 64-70 Zbl0582.57001MR825087
- Marc Culler, Peter B. Shalen, Varieties of group representations and splittings of -manifolds, Ann. of Math. (2) 117 (1983), 109-146 Zbl0529.57005MR683804
- Jeffrey Danciger, Geometric transitions: from hyperbolic to AdS geometry, (Thesis, Stanford University, 2011) Zbl1287.57020
- Werner Fenchel, Elementary geometry in hyperbolic space, 11 (1989), Walter de Gruyter & Co., Berlin Zbl0674.51001MR1004006
- Stefano Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. (2004), 425-459 Zbl1088.57015MR2040346
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), 200-225 Zbl0574.32032MR762512
- William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302 Zbl0619.58021MR846929
- William M. Goldman, The complex-symplectic geometry of -characters over surfaces, Algebraic groups and arithmetic (2004), 375-407, Tata Inst. Fund. Res., Mumbai Zbl1089.53060MR2094117
- F. González-Acuña, José María Montesinos-Amilibia, On the character variety of group representations in and , Math. Z. 214 (1993), 627-652 Zbl0799.20040MR1248117
- Michael Heusener, Joan Porti, The variety of characters in , Bol. Soc. Mat. Mexicana (3) 10 (2004), 221-237 Zbl1100.57014MR2199350
- C. Hodgson, Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds, (Thesis, Princeton University, 1986)
- Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl1180.57001MR1792613
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235-265 Zbl0528.57008MR690845
- Alexander Lubotzky, Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985) Zbl0598.14042MR818915
- A. Marden, Outer circles, (2007), Cambridge University Press, Cambridge Zbl1149.57030MR2355387
- Joan Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998), 365-392 Zbl0897.58042MR1489209
- Joan Porti, Hyperbolic polygons of minimal perimeter with given angles, Geom. Dedicata 156 (2012), 165-170 Zbl1236.51012MR2863552
- Jean-Marc Schlenker, Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007), 2155-2189 Zbl1126.53041MR2276616
- André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157 Zbl0192.12802MR169956
- Hartmut Weiss, Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 71 (2005), 437-506 Zbl1098.53038MR2198808
- Hartmut Weiss, Global rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 76 (2007), 495-523 Zbl1184.53049MR2331529
- Hartmut Weiss, The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than , (arXiv:0904.4568, 2009, to appear in Geom. and Top) Zbl1262.53032MR3035330
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.