Regenerating hyperbolic cone 3-manifolds from dimension 2

Joan Porti[1]

  • [1] Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Spain)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 5, page 1971-2015
  • ISSN: 0373-0956

Abstract

top
We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.

How to cite

top

Porti, Joan. "Regenerating hyperbolic cone 3-manifolds from dimension 2." Annales de l’institut Fourier 63.5 (2013): 1971-2015. <http://eudml.org/doc/275653>.

@article{Porti2013,
abstract = {We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.},
affiliation = {Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Spain)},
author = {Porti, Joan},
journal = {Annales de l’institut Fourier},
keywords = {orbifold; hyperbolic cone 3-manifold; degeneration; hyperbolic polygon; perimeter; fibers},
language = {eng},
number = {5},
pages = {1971-2015},
publisher = {Association des Annales de l’institut Fourier},
title = {Regenerating hyperbolic cone 3-manifolds from dimension 2},
url = {http://eudml.org/doc/275653},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Porti, Joan
TI - Regenerating hyperbolic cone 3-manifolds from dimension 2
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1971
EP - 2015
AB - We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
LA - eng
KW - orbifold; hyperbolic cone 3-manifold; degeneration; hyperbolic polygon; perimeter; fibers
UR - http://eudml.org/doc/275653
ER -

References

top
  1. A. Paiva Barreto, Déformation de structures hyperboliques coniques, (Thèse, Université Paul Sabatier, Toulouse, 2009) 
  2. Michel Boileau, Bernhard Leeb, Joan Porti, Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 57-62 Zbl0976.57017MR1805628
  3. Michel Boileau, Bernhard Leeb, Joan Porti, Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162 (2005), 195-290 Zbl1087.57009MR2178962
  4. Michel Boileau, Joan Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque (2001) Zbl0971.57004MR1844891
  5. F. Bonahon, L. Siebenmann, The classification of Seifert fibred 3 -orbifolds, Low-dimensional topology (Chelwood Gate, 1982) 95 (1985), 19-85, Cambridge Univ. Press, Cambridge Zbl0571.57011MR827297
  6. Daryl Cooper, Craig D. Hodgson, Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, 5 (2000), Mathematical Society of Japan, Tokyo Zbl0955.57014MR1778789
  7. Marc Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986), 64-70 Zbl0582.57001MR825087
  8. Marc Culler, Peter B. Shalen, Varieties of group representations and splittings of 3 -manifolds, Ann. of Math. (2) 117 (1983), 109-146 Zbl0529.57005MR683804
  9. Jeffrey Danciger, Geometric transitions: from hyperbolic to AdS geometry, (Thesis, Stanford University, 2011) Zbl1287.57020
  10. Werner Fenchel, Elementary geometry in hyperbolic space, 11 (1989), Walter de Gruyter & Co., Berlin Zbl0674.51001MR1004006
  11. Stefano Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. (2004), 425-459 Zbl1088.57015MR2040346
  12. William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), 200-225 Zbl0574.32032MR762512
  13. William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302 Zbl0619.58021MR846929
  14. William M. Goldman, The complex-symplectic geometry of SL ( 2 , ) -characters over surfaces, Algebraic groups and arithmetic (2004), 375-407, Tata Inst. Fund. Res., Mumbai Zbl1089.53060MR2094117
  15. F. González-Acuña, José María Montesinos-Amilibia, On the character variety of group representations in SL ( 2 , C ) and PSL ( 2 , C ) , Math. Z. 214 (1993), 627-652 Zbl0799.20040MR1248117
  16. Michael Heusener, Joan Porti, The variety of characters in PSL 2 ( ) , Bol. Soc. Mat. Mexicana (3) 10 (2004), 221-237 Zbl1100.57014MR2199350
  17. C. Hodgson, Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds, (Thesis, Princeton University, 1986) 
  18. Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl1180.57001MR1792613
  19. Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235-265 Zbl0528.57008MR690845
  20. Alexander Lubotzky, Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985) Zbl0598.14042MR818915
  21. A. Marden, Outer circles, (2007), Cambridge University Press, Cambridge Zbl1149.57030MR2355387
  22. Joan Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998), 365-392 Zbl0897.58042MR1489209
  23. Joan Porti, Hyperbolic polygons of minimal perimeter with given angles, Geom. Dedicata 156 (2012), 165-170 Zbl1236.51012MR2863552
  24. Jean-Marc Schlenker, Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007), 2155-2189 Zbl1126.53041MR2276616
  25. André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157 Zbl0192.12802MR169956
  26. Hartmut Weiss, Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 71 (2005), 437-506 Zbl1098.53038MR2198808
  27. Hartmut Weiss, Global rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 76 (2007), 495-523 Zbl1184.53049MR2331529
  28. Hartmut Weiss, The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2 π , (arXiv:0904.4568, 2009, to appear in Geom. and Top) Zbl1262.53032MR3035330

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.