On Automorphisms of the Affine Cremona Group

Hanspeter Kraft[1]; Immanuel Stampfli[1]

  • [1] Universität Basel Mathematisches Institut Rheinsprung 21, CH-4051 Basel (Suisse)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 3, page 1137-1148
  • ISSN: 0373-0956

Abstract

top
We show that every automorphism of the group 𝒢 n : = A u t ( 𝔸 n ) of polynomial automorphisms of complex affine n -space 𝔸 n = n is inner up to field automorphisms when restricted to the subgroup T 𝒢 n of tame automorphisms. This generalizes a result of Julie Deserti who proved this in dimension n = 2 where all automorphisms are tame: T 𝒢 2 = 𝒢 2 . The methods are different, based on arguments from algebraic group actions.

How to cite

top

Kraft, Hanspeter, and Stampfli, Immanuel. "On Automorphisms of the Affine Cremona Group." Annales de l’institut Fourier 63.3 (2013): 1137-1148. <http://eudml.org/doc/275671>.

@article{Kraft2013,
abstract = {We show that every automorphism of the group $\{\mathcal\{G\}\}_\{n\}:=Aut (\{\mathbb\{A\}\}^\{n\})$ of polynomial automorphisms of complex affine $n$-space $\{\mathbb\{A\}\}^\{n\}=\{\mathbb\{C\}\}^\{n\}$ is inner up to field automorphisms when restricted to the subgroup $T\{\mathcal\{G\}\}_\{n\}$ of tame automorphisms. This generalizes a result of Julie Deserti who proved this in dimension $n=2$ where all automorphisms are tame: $T\{\mathcal\{G\}\}_\{2\} = \{\mathcal\{G\}\}_\{2\}$. The methods are different, based on arguments from algebraic group actions.},
affiliation = {Universität Basel Mathematisches Institut Rheinsprung 21, CH-4051 Basel (Suisse); Universität Basel Mathematisches Institut Rheinsprung 21, CH-4051 Basel (Suisse)},
author = {Kraft, Hanspeter, Stampfli, Immanuel},
journal = {Annales de l’institut Fourier},
keywords = {Polynomial automorphisms; algebraic group actions; ind-varieties; affine n-space; polynomial automorphisms; affine -space},
language = {eng},
number = {3},
pages = {1137-1148},
publisher = {Association des Annales de l’institut Fourier},
title = {On Automorphisms of the Affine Cremona Group},
url = {http://eudml.org/doc/275671},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Kraft, Hanspeter
AU - Stampfli, Immanuel
TI - On Automorphisms of the Affine Cremona Group
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 3
SP - 1137
EP - 1148
AB - We show that every automorphism of the group ${\mathcal{G}}_{n}:=Aut ({\mathbb{A}}^{n})$ of polynomial automorphisms of complex affine $n$-space ${\mathbb{A}}^{n}={\mathbb{C}}^{n}$ is inner up to field automorphisms when restricted to the subgroup $T{\mathcal{G}}_{n}$ of tame automorphisms. This generalizes a result of Julie Deserti who proved this in dimension $n=2$ where all automorphisms are tame: $T{\mathcal{G}}_{2} = {\mathcal{G}}_{2}$. The methods are different, based on arguments from algebraic group actions.
LA - eng
KW - Polynomial automorphisms; algebraic group actions; ind-varieties; affine n-space; polynomial automorphisms; affine -space
UR - http://eudml.org/doc/275671
ER -

References

top
  1. Hyman Bass, Edwin H. Connell, David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330 Zbl0539.13012MR663785
  2. A. Białynicki-Birula, Remarks on the action of an algebraic torus on k n , Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177-181 Zbl0163.42901MR200279
  3. Julie Déserti, Sur le groupe des automorphismes polynomiaux du plan affine, J. Algebra 297 (2006), 584-599 Zbl1096.14046MR2209276
  4. John Fogarty, Fixed point schemes, Amer. J. Math. 95 (1973), 35-51 Zbl0272.14012MR332805
  5. Hanspeter Kraft, Vladimir L. Popov, Semisimple group actions on the three-dimensional affine space are linear, Comment. Math. Helv. 60 (1985), 466-479 Zbl0645.14020MR814152
  6. Hanspeter Kraft, Peter Russell, Families of group actions, generic isotriviality, and linearization, (2011) Zbl1317.14104
  7. Hanspeter Kraft, Gerald W. Schwarz, Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. (1992), 1-97 Zbl0783.14026MR1215592
  8. Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1026.17030MR1923198
  9. Alvaro Liendo, Roots of the affine Cremona group, Transform. Groups 16 (2011), 1137-1142 Zbl1255.14036MR2852493
  10. Jean-Pierre Serre, How to use finite fields for problems concerning infinite fields, Arithmetic, geometry, cryptography and coding theory 487 (2009), 183-193, Amer. Math. Soc., Providence, RI Zbl1199.14007MR2555994
  11. P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), 572-578 Zbl0009.41101MR1503180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.