Trend to equilibrium and spectral localization properties for the linear Boltzmann equation
Daniel Han-Kwan[1]; Matthieu Léautaud[2]
- [1] CNRS and École Polytechnique Centre de Mathématiques Laurent Schwartz UMR7640 F91128 Palaiseau cedex
- [2] Université Paris Diderot Institut de Mathématiques de Jussieu Paris Rive Gauche Bâtiment Sophie Germain 75205 Paris Cedex 13 France
Séminaire Laurent Schwartz — EDP et applications (2013-2014)
- page 1-15
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topHan-Kwan, Daniel, and Léautaud, Matthieu. "Trend to equilibrium and spectral localization properties for the linear Boltzmann equation." Séminaire Laurent Schwartz — EDP et applications (2013-2014): 1-15. <http://eudml.org/doc/275675>.
@article{Han2013-2014,
abstract = {The aim of this note is to present the results from [11, 12], which deal with the linear Boltzmann equation, set in a bounded domain and in the presence of an external force. A specificity of these works is that the collision operator is allowed to be degenerate in the following two senses: (1) the associated collision kernel may vanish in a large subset of the phase space; (2) we do not assume that it is bounded below by a Maxwellian at infinity in velocity.We study:the large time behavior of solutions of the linear Boltzmann equation, by giving criteria (inspired from control theory) which ensure converge towards an equilibrium and when possible, convergence at an exponential rate [11] ;some properties of localization for the spectrum of the associated operator [12].},
affiliation = {CNRS and École Polytechnique Centre de Mathématiques Laurent Schwartz UMR7640 F91128 Palaiseau cedex; Université Paris Diderot Institut de Mathématiques de Jussieu Paris Rive Gauche Bâtiment Sophie Germain 75205 Paris Cedex 13 France},
author = {Han-Kwan, Daniel, Léautaud, Matthieu},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-15},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Trend to equilibrium and spectral localization properties for the linear Boltzmann equation},
url = {http://eudml.org/doc/275675},
year = {2013-2014},
}
TY - JOUR
AU - Han-Kwan, Daniel
AU - Léautaud, Matthieu
TI - Trend to equilibrium and spectral localization properties for the linear Boltzmann equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 15
AB - The aim of this note is to present the results from [11, 12], which deal with the linear Boltzmann equation, set in a bounded domain and in the presence of an external force. A specificity of these works is that the collision operator is allowed to be degenerate in the following two senses: (1) the associated collision kernel may vanish in a large subset of the phase space; (2) we do not assume that it is bounded below by a Maxwellian at infinity in velocity.We study:the large time behavior of solutions of the linear Boltzmann equation, by giving criteria (inspired from control theory) which ensure converge towards an equilibrium and when possible, convergence at an exponential rate [11] ;some properties of localization for the spectrum of the associated operator [12].
LA - eng
UR - http://eudml.org/doc/275675
ER -
References
top- C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30:1024–1065, 1992. Zbl0786.93009MR1178650
- É. Bernard and F. Salvarani. On the convergence to equilibrium for degenerate transport problems. Arch. Ration. Mech. Anal., 208(3):977–984, 2013. Zbl1282.35055MR3048598
- É. Bernard and F. Salvarani. On the exponential decay to equilibrium of the degenerate linear Boltzmann equation. J. Funct. Anal., 265(9):1934–1954, 2013. Zbl06262364MR3084493
- L. Desvillettes and F. Salvarani. Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math., 133(8):848–858, 2009. Zbl1180.35102MR2569870
- L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001. Zbl1029.82032MR1787105
- L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math., 159(2):245–316, 2005. Zbl1162.82316MR2116276
- R. J. DiPerna, P.-L. Lions, and Y. Meyer. regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-4):271–287, 1991. Zbl0763.35014MR1127927
- J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. http://arxiv.org/abs/1005.1495, to appear in Trans. AMS, 2010. Zbl06429109
- F. Golse, P.-L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76(1):110–125, 1988. Zbl0652.47031MR923047
- Y. Guo. Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal., 197(3):713–809, 2010. Zbl1291.76276MR2679358
- D. Han-Kwan and M. Léautaud. Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium. http://arxiv.org/abs/1401.8227, 2014.
- D. Han-Kwan and M. Léautaud. Geometric analysis of the linear Boltzmann equation II. Localization properties of the spectrum. 2014.
- F. Hérau. Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal., 46(3-4):349–359, 2006. Zbl1096.35019MR2215889
- F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal., 171(2):151–218, 2004. Zbl1139.82323MR2034753
- H. Koch and D. Tataru. On the spectrum of hyperbolic semigroups. Comm. Partial Differential Equations, 20(5-6):901–937, 1995. Zbl0823.35108MR1326911
- G. Lebeau. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996. Zbl0863.58068MR1385677
- C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity, 19(4):969–998, 2006. Zbl1169.82306MR2214953
- J. Rauch and M. Taylor. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J., 24:79–86, 1974. Zbl0281.35012MR361461
- S. Ukai, N. Point, and H. Ghidouche. Sur la solution globale du problème mixte de l’équation de Boltzmann nonlinéaire. J. Math. Pures Appl. (9), 57(3):203–229, 1978. Zbl0335.35027MR513098
- I. Vidav. Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. J. Math. Anal. Appl., 22:144–155, 1968. Zbl0155.19203MR230531
- I. Vidav. Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl., 30:264–279, 1970. Zbl0195.13704MR259662
- C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009. Zbl1197.35004MR2562709
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.