Inviscid limit for free-surface Navier-Stokes equations
- [1] IRMAR Université de Rennes 1 campus de Beaulieu 35042 Rennes cedex France
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- Volume: 2012-2013, page 1-11
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topRousset, Frédéric. "Inviscid limit for free-surface Navier-Stokes equations." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-11. <http://eudml.org/doc/275678>.
@article{Rousset2012-2013,
abstract = {The aim of this talk is to present recent results obtained with N. Masmoudi on the free surface Navier-Stokes equations with small viscosity.},
affiliation = {IRMAR Université de Rennes 1 campus de Beaulieu 35042 Rennes cedex France},
author = {Rousset, Frédéric},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {Navier-Stokes equations; free surface},
language = {eng},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Inviscid limit for free-surface Navier-Stokes equations},
url = {http://eudml.org/doc/275678},
volume = {2012-2013},
year = {2012-2013},
}
TY - JOUR
AU - Rousset, Frédéric
TI - Inviscid limit for free-surface Navier-Stokes equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 11
AB - The aim of this talk is to present recent results obtained with N. Masmoudi on the free surface Navier-Stokes equations with small viscosity.
LA - eng
KW - Navier-Stokes equations; free surface
UR - http://eudml.org/doc/275678
ER -
References
top- Alazard, T., Burq, N., and Zuily C., On the Cauchy problem for gravity water waves, preprint 2012, http://arxiv.org/abs/1212.0626. Zbl1308.35195MR2762387
- Alazard, T., Burq, N., and Zuily C., On the Water Waves Equations with Surface Tension, Duke Math. J. 158 3 (2011), 413-499. Zbl1258.35043MR2805065
- Alinhac, S., Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations 14, 2(1989), 173–230. Zbl0692.35063MR976971
- Bardos, C., Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40 (1972), 769–790. Zbl0249.35070MR333488
- Bardos, C. and Rauch, J., Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Amer. Math. Soc. 270, 2 (1982), 377–408. Zbl0485.35010MR645322
- Beale, J. T., The initial value problem for the Navier-Stokes equations with a free surface. Comm. Pure Appl. Math. 34, 3 (1981), 359–392. Zbl0464.76028MR611750
- Beirão da Veiga, H., Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5, 4 (2006), 907–918. Zbl1132.35067MR2246015
- Beirão da Veiga, H. and Crispo, F., Concerning the -inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech. Zbl1270.35333MR2784899
- Bony, J.-M., Calcul symbolique et propagation des singularités pour les équations aux drivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4) 14, 2(1981). Zbl0495.35024MR631751
- Christodoulou, D. and Lindblad, H., On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53, 12(2000), 1536–1602. Zbl1031.35116MR1780703
- Clopeau, T., Mikelić, A., and Robert, R., On the vanishing viscosity limit for the incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 6 (1998), 1625–1636. Zbl0911.76014MR1660366
- Coutand, D. and Shkoller S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007),829–930. Zbl1123.35038MR2291920
- Grard-Varet, D. and Dormy, E., On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 2(2010), 591–609 Zbl1197.35204MR2601044
- Germain, P., Masmoudi, N., and Shatah, J., Global solutions for the gravity water waves in dimension 3, http://arxiv.org/abs/0906.5343. Zbl1241.35003
- Gisclon, M. and Serre, D., Étude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319, 4 (1994), 377–382. Zbl0808.35075MR1289315
- Grenier, E., On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53, 9(2000),1067–1091. Zbl1048.35081MR1761409
- Grenier, E. and Guès, O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143, 1 (1998), 110–146. Zbl0896.35078MR1604888
- Grenier, E. and Rousset, F., Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 11 (2001), 1343–1385. Zbl1026.35015MR1846801
- Guès, O., Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial Differential Equations 15, 5 (1990), 595–645. Zbl0712.35061MR1070840
- Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. 197, 1(2010), 1–87. Zbl1217.35136MR2646814
- Guo, Y. and Nguyen T., A note on the Prandtl boundary layers, http://arxiv.org/abs/1011.0130. Zbl1232.35126MR2849481
- Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math. (2) 83 (1966), 129–209. Zbl0132.07402MR233064
- Iftimie, D. and Planas, G., Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 4 (2006), 899–918. Zbl1169.35365MR2214949
- Iftimie, D. and Sueur, F., Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Rat. Mech. Analysis, available online. Zbl1229.35184
- Kelliher, J. P., Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 1 (2006), 210–232 (electronic). Zbl1302.35295MR2217315
- Lannes, D., Well-posedness of the water-waves equations, Journal AMS 18 (2005) 605-654. Zbl1069.35056MR2138139
- Lindblad, H., Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Comm. Pure Appl. Math. 56. 2(2003), 153–197. Zbl1025.35017MR1934619
- Lindblad, H., Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162. 1 (2005), 109–194. Zbl1095.35021MR2178961
- Masmoudi, N. and Rousset F., Uniform regularity for the Navier-Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal. 203 (2012), no. 2, 529Ð575. Zbl1286.76026MR2885569
- Masmoudi, N. and Rousset F., Vanishing viscosity limit for the free surface compressible Navier-Stokes system, in preparation. Zbl1286.76026
- Masmoudi, N. and Rousset F., Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equation, preprint 2012, http://arxiv.org/abs/1202.0657. MR2885569
- Métivier, G. and Zumbrun K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175 2005, 826. Zbl1074.35066MR2130346
- Rousset, F., Characteristic boundary layers in real vanishing viscosity limits. J. Differential Equations 210, 1 (2005), 25–64. Zbl1060.35015MR2114123
- Sammartino, M. and Caflisch, R. E., Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192, 2 (1998), 433–461. Zbl0913.35102MR1617542
- Shatah, J. and Zeng, C., Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008), 698–744. Zbl1174.76001MR2388661
- Tani, A. and Tanaka, N., Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rational Mech. Anal. 130, 4(1995), 303–314. Zbl0844.76025MR1346360
- Tartakoff, D. S., Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1971/72), 1113–1129. Zbl0235.35019MR440182
- Temam, R. and Wang, X., Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J. Differential Equations 179, 2 (2002), 647–686. Zbl0997.35042MR1885683
- Xiao, Y. and Xin, Z., On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 7 (2007), 1027–1055. Zbl1117.35063MR2319054
- Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc.,12 (1999), 445–495. Zbl0921.76017MR1641609
- Wu, S., Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 1(2011), 125–220. Zbl1221.35304MR2782254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.