À propos de certains problèmes inverses hybrides
Giovanni S. Alberti[1]; Yves Capdeboscq[1]
- [1] Mathematical Institute Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG United Kingdom
Séminaire Laurent Schwartz — EDP et applications (2013-2014)
- page 1-9
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topAlberti, Giovanni S., and Capdeboscq, Yves. "À propos de certains problèmes inverses hybrides." Séminaire Laurent Schwartz — EDP et applications (2013-2014): 1-9. <http://eudml.org/doc/275679>.
@article{Alberti2013-2014,
abstract = {Dans cet exposé, nous présentons quelques résultats récents concernant certains problèmes d’identification de paramètres de type hybride, aussi appelés multi-physiques, pour lesquels le modèles physique sous-jacent est une équation aux dérivées partielles elliptique.},
affiliation = {Mathematical Institute Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG United Kingdom; Mathematical Institute Andrew Wiles Building Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG United Kingdom},
author = {Alberti, Giovanni S., Capdeboscq, Yves},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {À propos de certains problèmes inverses hybrides},
url = {http://eudml.org/doc/275679},
year = {2013-2014},
}
TY - JOUR
AU - Alberti, Giovanni S.
AU - Capdeboscq, Yves
TI - À propos de certains problèmes inverses hybrides
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 9
AB - Dans cet exposé, nous présentons quelques résultats récents concernant certains problèmes d’identification de paramètres de type hybride, aussi appelés multi-physiques, pour lesquels le modèles physique sous-jacent est une équation aux dérivées partielles elliptique.
LA - fre
UR - http://eudml.org/doc/275679
ER -
References
top- G. S. Alberti. On multiple frequency power density measurements. Inverse Problems, 29(11) :115007, 25, 2013. Zbl1288.35204MR3116343
- G. S. Alberti. On multiple frequency power density measurements II. The full Maxwell’s equations. submitted, 2013. MR3116343
- G. S. Alberti. Enforcing local non-zero-constraints in pde and applications to hybrid imaging problems. sub, page 23, 2014.
- G. Alessandrini. Determining conductivity by boundary measurements, the stability issue. In Renato Spigler, editor, Applied and Industrial Mathematics, volume 56 of Mathematics and Its Applications, pages 317–324. Springer Netherlands, 1991. Zbl0723.35082MR1147209
- G. Alessandrini and V. Nesi. Univalent -harmonic mappings. Arch. Rat. Mech. Anal., 158 :155–171, 2001. Zbl0977.31006MR1838656
- Giovanni Alessandrini, Antonino Morassi, Edi Rosset, and Sergio Vessella. On doubling inequalities for elliptic systems. J. Math. Anal. Appl., 357(2) :349–355, 2009. Zbl1167.35541MR2557649
- H. Ammari. An introduction to mathematics of emerging biomedical imaging, volume 62 of Mathématiques & Applications (Berlin). Springer, Berlin, 2008. Zbl1181.92052MR2440857
- H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink. Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math., 68(6) :1557–1573, 2008. Zbl1156.35101MR2424952
- H. Ammari, E. Bossy, V. Jugnon, and H. Kang. Mathematical modeling in photoacoustic imaging of small absorbers. SIAM Rev., 52(4) :677–695, 2010. Zbl1257.74091MR2736968
- H. Ammari, E. Bretin, J. Garnier, and V. Jugnon. Coherent interferometry algorithms for photoacoustic imaging. SIAM J. Numer. Anal., 50(5) :2259–2280, 2012. Zbl1262.65204MR3022218
- H. Ammari, Y. Capdeboscq, F. de Gournay, A. Rozanova-Pierrat, and F. Triki. Microwave imaging by elastic deformation. SIAM J. Appl. Math., 71(6) :2112–2130, 2011. Zbl1235.31006MR2873260
- Habib Ammari, Laure Giovangigli, Loc Hoang Nguyen, and Jin-Keun Seo. Admittivity imaging from multi-frequency micro-electrical impedance tomography. http://arxiv.org/abs/1403.5708, 2014.
- K. Astala and L. Päivärinta. Calderón’s inverse conductivity problem in the plane. Ann. of Math. (2), 163(1) :265–299, 2006. Zbl1111.35004MR2195135
- G. Bal, E. Bonnetier, F. Monard, and F. Triki. Inverse diffusion from knowledge of power densities. Inverse Probl. Imaging, 7(2) :353–375, 2013. Zbl1267.35249MR3063538
- Patricia Bauman, Antonella Marini, and Vincenzo Nesi. Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J., 50(2) :747–757, 2001. Zbl1330.35121MR1871388
- M. Briane. Isotropic realizability of electric fields around critical points. Discrete and Continuous Dynamical Systems - Series B, 19 :353–372, 2014. Zbl1286.35071MR3170189
- M. Briane, G. W. Milton, and V. Nesi. Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity. Arch. Ration. Mech. Anal., 173(1) :133–150, 2004. Zbl1118.78009MR2073507
- M. Briane, G. W. Milton, and A. Treibergs. Which electric fields are realizable in conducting materials ? ESAIM : Mathematical Modelling and Numerical Analysis, 48 :307–323, 3 2014. Zbl1315.35021MR3177847
- A.-P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980. MR590275
- Y. Capdeboscq, J. Fehrenbach, F. de Gournay, and O. Kavian. Imaging by modification : numerical reconstruction of local conductivities from corresponding power density measurements. SIAM J. Imaging Sci., 2(4) :1003–1030, 2009. Zbl1180.35549MR2559157
- P. Kuchment and L. Kunyansky. Mathematics of photoacoustic and thermoacoustic tomography. In Otmar Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 817–865. Springer New York, 2011. Zbl1259.92065MR2885203
- R. S. Laugesen. Injectivity can fail for higher-dimensional harmonic extensions. Complex Variables Theory Appl., 28(4) :357–369, 1996. Zbl0871.54020MR1700199
- N. Mandache. Exponential instability in an inverse problem for the Schrödinger equation. Inverse Problems, 17(5) :1435, 2001. Zbl0985.35110MR1862200
- Antonios D. Melas. An example of a harmonic map between Euclidean balls. Proc. Amer. Math. Soc., 117(3) :857–859, 1993. Zbl0836.54007MR1112497
- Siegfried Momm. Lower bounds for the modulus of analytic functions. Bull. London Math. Soc., 22(3) :239–244, 1990. Zbl0668.30001MR1041137
- G. Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25(12) :123011, 2009. Zbl1181.35339
- K. Wang and M. A. Anastasio. Photoacoustic and thermoacoustic tomography : Image formation principles. In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 781–815. Springer New York, 2011. Zbl1259.78035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.