The Nash-Kuiper process for curves

Vincent Borrelli[1]; Saïd Jabrane[1]; Francis Lazarus[2]; Boris Thibert[3]

  • [1] Institut Camille Jordan, Université Lyon I, Villeurbanne, France
  • [2] CNRS, GIPSA-Lab, Université de Grenoble, France
  • [3] Laboratoire Jean Kuntzmann, Université de Grenoble, France

Séminaire de théorie spectrale et géométrie (2011-2012)

  • Volume: 30, page 1-19
  • ISSN: 1624-5458

Abstract

top
A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.

How to cite

top

Borrelli, Vincent, et al. "The Nash-Kuiper process for curves." Séminaire de théorie spectrale et géométrie 30 (2011-2012): 1-19. <http://eudml.org/doc/275683>.

@article{Borrelli2011-2012,
abstract = {A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.},
affiliation = {Institut Camille Jordan, Université Lyon I, Villeurbanne, France; Institut Camille Jordan, Université Lyon I, Villeurbanne, France; CNRS, GIPSA-Lab, Université de Grenoble, France; Laboratoire Jean Kuntzmann, Université de Grenoble, France},
author = {Borrelli, Vincent, Jabrane, Saïd, Lazarus, Francis, Thibert, Boris},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {convex integration; isometric embedding Riesz product; isometric embeddings; convex integration theory; barycentric formula},
language = {eng},
pages = {1-19},
publisher = {Institut Fourier},
title = {The Nash-Kuiper process for curves},
url = {http://eudml.org/doc/275683},
volume = {30},
year = {2011-2012},
}

TY - JOUR
AU - Borrelli, Vincent
AU - Jabrane, Saïd
AU - Lazarus, Francis
AU - Thibert, Boris
TI - The Nash-Kuiper process for curves
JO - Séminaire de théorie spectrale et géométrie
PY - 2011-2012
PB - Institut Fourier
VL - 30
SP - 1
EP - 19
AB - A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.
LA - eng
KW - convex integration; isometric embedding Riesz product; isometric embeddings; convex integration theory; barycentric formula
UR - http://eudml.org/doc/275683
ER -

References

top
  1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (1965), Dover Zbl0171.38503
  2. J. Borisov, C 1 , α -isometric immersions of Riemmannian spaces, Dokl. Akad. Nauk. SSSR 163 (1965), 11-13 Zbl0135.40303MR192449
  3. J. Borisov, Irregular C 1 , β -surfaces with an analytic metric, Siberian Math. J. 45 (2004), 19-52 Zbl1054.53081MR2047871
  4. V. Borrelli, S. Jabrane, F. Lazarus, B. Thibert, Flat tori in three-dimensional space and convex integration, 109, 7218-7223 Zbl1267.53004
  5. E. Cartan, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 6 (1927), 1-7 Zbl54.0763.05
  6. S. Conti, C. De Lellis, Székelyhidin L., H-principle and rigidity for C 1 , α -isometric embeddings 
  7. Y. Eliahsberg, N. Mishachev, Introduction to the h -principle, 48 (2002), AMS, Providence Zbl1008.58001
  8. K. Falconer, Fractal Geometry, (2003), Wiley Zbl1060.28005MR2118797
  9. M. Gromov, Partial Differential Relations, 9 (1986), Springer-Verlag, Berlin Zbl0651.53001MR864505
  10. M. Günther, On the pertubation problem associated to isometric embeddings of Riemannian manifolds, Ann. Global Anal. Geom. 7 (1989), 69-77 Zbl0691.53006MR1029846
  11. M. Janet, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 5 (1926), 38-43 Zbl53.0699.01
  12. J.-P. Kahane, Jacques Peyrière et les produits de Riesz 
  13. N. Kuiper, On C 1 -isometric imbeddings, Indag. Math. 17 (1955), 545-556 Zbl0067.39601MR75640
  14. J. Nash, C 1 -isometric imbeddings, Ann. of Math. (2) 60 (1954), 383-396 Zbl0058.37703MR65993
  15. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (1) 63 (1956), 20-63 Zbl0070.38603MR75639
  16. D. Spring, Convex Integration Theory, (1998), Bikhauser Zbl0997.57500MR1488424
  17. G. N. Watson, A Treatise on the Theory of Bessel Functions, (1995), Cambridge University Press Zbl0849.33001MR1349110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.