The Nash-Kuiper process for curves
Vincent Borrelli[1]; Saïd Jabrane[1]; Francis Lazarus[2]; Boris Thibert[3]
- [1] Institut Camille Jordan, Université Lyon I, Villeurbanne, France
- [2] CNRS, GIPSA-Lab, Université de Grenoble, France
- [3] Laboratoire Jean Kuntzmann, Université de Grenoble, France
Séminaire de théorie spectrale et géométrie (2011-2012)
- Volume: 30, page 1-19
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topBorrelli, Vincent, et al. "The Nash-Kuiper process for curves." Séminaire de théorie spectrale et géométrie 30 (2011-2012): 1-19. <http://eudml.org/doc/275683>.
@article{Borrelli2011-2012,
abstract = {A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.},
affiliation = {Institut Camille Jordan, Université Lyon I, Villeurbanne, France; Institut Camille Jordan, Université Lyon I, Villeurbanne, France; CNRS, GIPSA-Lab, Université de Grenoble, France; Laboratoire Jean Kuntzmann, Université de Grenoble, France},
author = {Borrelli, Vincent, Jabrane, Saïd, Lazarus, Francis, Thibert, Boris},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {convex integration; isometric embedding Riesz product; isometric embeddings; convex integration theory; barycentric formula},
language = {eng},
pages = {1-19},
publisher = {Institut Fourier},
title = {The Nash-Kuiper process for curves},
url = {http://eudml.org/doc/275683},
volume = {30},
year = {2011-2012},
}
TY - JOUR
AU - Borrelli, Vincent
AU - Jabrane, Saïd
AU - Lazarus, Francis
AU - Thibert, Boris
TI - The Nash-Kuiper process for curves
JO - Séminaire de théorie spectrale et géométrie
PY - 2011-2012
PB - Institut Fourier
VL - 30
SP - 1
EP - 19
AB - A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.
LA - eng
KW - convex integration; isometric embedding Riesz product; isometric embeddings; convex integration theory; barycentric formula
UR - http://eudml.org/doc/275683
ER -
References
top- M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (1965), Dover Zbl0171.38503
- J. Borisov, -isometric immersions of Riemmannian spaces, Dokl. Akad. Nauk. SSSR 163 (1965), 11-13 Zbl0135.40303MR192449
- J. Borisov, Irregular -surfaces with an analytic metric, Siberian Math. J. 45 (2004), 19-52 Zbl1054.53081MR2047871
- V. Borrelli, S. Jabrane, F. Lazarus, B. Thibert, Flat tori in three-dimensional space and convex integration, 109, 7218-7223 Zbl1267.53004
- E. Cartan, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 6 (1927), 1-7 Zbl54.0763.05
- S. Conti, C. De Lellis, Székelyhidin L., H-principle and rigidity for -isometric embeddings
- Y. Eliahsberg, N. Mishachev, Introduction to the -principle, 48 (2002), AMS, Providence Zbl1008.58001
- K. Falconer, Fractal Geometry, (2003), Wiley Zbl1060.28005MR2118797
- M. Gromov, Partial Differential Relations, 9 (1986), Springer-Verlag, Berlin Zbl0651.53001MR864505
- M. Günther, On the pertubation problem associated to isometric embeddings of Riemannian manifolds, Ann. Global Anal. Geom. 7 (1989), 69-77 Zbl0691.53006MR1029846
- M. Janet, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien, Ann. Soc. Pol. Math. 5 (1926), 38-43 Zbl53.0699.01
- J.-P. Kahane, Jacques Peyrière et les produits de Riesz
- N. Kuiper, On -isometric imbeddings, Indag. Math. 17 (1955), 545-556 Zbl0067.39601MR75640
- J. Nash, -isometric imbeddings, Ann. of Math. (2) 60 (1954), 383-396 Zbl0058.37703MR65993
- J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (1) 63 (1956), 20-63 Zbl0070.38603MR75639
- D. Spring, Convex Integration Theory, (1998), Bikhauser Zbl0997.57500MR1488424
- G. N. Watson, A Treatise on the Theory of Bessel Functions, (1995), Cambridge University Press Zbl0849.33001MR1349110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.