Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
- [1] Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050 Université Paris-Est Créteil 61, avenue du Général de Gaulle 94010 Créteil Cedex, France
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- page 1-11
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBahouri, Hajer. "Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-11. <http://eudml.org/doc/275699>.
@article{Bahouri2014-2015,
abstract = {On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante $\{\bf 1\}$-oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.},
affiliation = {Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050 Université Paris-Est Créteil 61, avenue du Général de Gaulle 94010 Créteil Cedex, France},
author = {Bahouri, Hajer},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle},
url = {http://eudml.org/doc/275699},
year = {2014-2015},
}
TY - JOUR
AU - Bahouri, Hajer
TI - Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
AB - On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante ${\bf 1}$-oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.
LA - fre
UR - http://eudml.org/doc/275699
ER -
References
top- S. Adachi and K. Tanaka, Trudinger type inequalities in and their best exponents, Proceedings in American Mathematical Society, 128 (2000), 2051-2057. Zbl0980.46020MR1646323
- Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Communications in Partial Differential Equations, 29 (2004), 295–322. Zbl1076.46022MR2038154
- H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, (2011). Zbl1227.35004MR2768550
- H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Math, 121 (1999), 131-175. Zbl0919.35089MR1705001
- H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, 260 (2011), 208-252. Zbl1217.46017MR2733577
- H. Bahouri, M. Majdoub and N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding, the general case, Journal de Mathématiques Pures et Appliquées, 101 (2014), 415-457. Zbl1305.46024MR3179749
- H. Bahouri, On the elements involved in the lack of compactness in critical Sobolev embedding, Concentration Analysis and Applications to PDE, Trends in Mathematics, (2013), 1-15. Zbl1291.46030
- H. Bahouri, S. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Journal of Differential and Integral Equations, 27 (2014), 233-268. Zbl1324.35167MR3161603
- H. Bahouri and G. Perelman, A Fourier approach to the profile decomposition in Orlicz spaces, Mathematical Research Letters, 21 (2014), 33-54. Zbl1311.46030MR3247037
- H. Bahouri and I. Gallagher, On the stability in weak topology of the set of global solutions to the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 209 (2013), 569-629. Zbl1283.35061MR3056618
- H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, Ser. I 352 (2014), 305-310. Zbl1294.35056MR3186918
- H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, http://arxiv.org/abs/1310.0256. Zbl1294.35056MR3186918
- I. Ben Ayed and M. K. Zghal, Characterization of the lack of compactness of into the Orlicz space, Communications in Contemporary Mathematics, 16 (2014), 1-25. MR3231057
- L. Berlyand, P. Mironescu, V. Rybalko and E. Sandier, Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions : existence and bubbling, Communications in Partial Differential Equations, 39 (2014), 946-1005. Zbl1296.35036MR3196191
- H. Brézis and J.-M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Archive for Rational Mechanics and Analysis, 89 (1985), 21-86. Zbl0584.49024MR784102
- J. Bourgain, A remark on Schrödinger operators, Israel Journal of Mathematics, 77 (1992), 1-16. Zbl0798.35131MR1194782
- J. Bourgain, Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math, 42 (1995), 83-112. Zbl0840.42007MR1315543
- T. Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proceedings of the Royal Society of Edinburgh. Section A, 84 (1979), 327-346. Zbl0428.35021MR559676
- J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimension, Journal of Hyperbolic Differential Equations, 6 (2009), 549-575. Zbl1191.35250MR2568809
- R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : I http://arxiv.org/abs/1209.3682. Zbl1315.35130
- R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : II http://arxiv.org/abs/1209.3684. Zbl1315.35131
- O. Druet, Multibumps analysis in dimension 2 - Quantification of blow up levels, Duke Math. Journal, 132 (2006), 217-269. Zbl1281.35045MR2219258
- I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the Navier-Stokes regularity criterion, Mathematische Annalen, 355 (2013), 1527-1559. Zbl1291.35180MR3037023
- P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations, 3 (1998), 213-233. Zbl0907.46027
- P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, Journal of Functional Analysis, 133 (1996), 50–68. Zbl0868.35075
- A. Henrot and M. Pierre, Variations et optimistation de formes, Mathématiques et applications, Springer, 48, (2005). Zbl1098.49001MR2512810
- S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the two dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849. Zbl1241.35188MR2929605
- S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proceedings of the American Mathematical Society, 135 (2007), 87–97. Zbl1130.46018MR2280178
- C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212. Zbl1183.35202MR2461508
- S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, Journal of Differential equations, 175 (2001), 353-392. Zbl1038.35119MR1855973
- J. F. Lam, B. Lippman, and F. Tappert, Self trapped laser beams in plasma, Physics of Fluids, 20 (1977), 1176-1179.
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Revista Matematica Iberoamericana1(1) (1985), 145-201. Zbl0704.49005MR834360
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II., Revista Matematica Iberoamericana1(2) (1985), 45-121. Zbl0704.49006MR850686
- G. Mancini, K. Sandeep, and C.Tintarev, Trudinger-Moser inequality in the hyperbolic space , Advances in Nonlinear Analysis2 (2013), 309-324. Zbl1274.35435MR3089744
- F. Merle and L. Vega, Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D, International Mathematics Research Notices, 8 (1998), 399-425. Zbl0913.35126MR1628235
- J. Moser, A sharp form of an inequality of N. Trudinger, Indiana University Mathematics Journal, 20 (1971), 1077-1092. Zbl0203.43701MR301504
- A. Moyua, A. Vargas and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in , Duke Mathematical Journal, 96 (1999), 1-28. Zbl0946.42011MR1671214
- M.-M. Rao and Z.-D. Ren, Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002), Marcel Dekker Inc. Zbl0997.46027MR1890178
- B. Ruf and F. Sani, Sharp Adams-type inequalities in , Transactions of the American Mathematical Society, 2 (2013), 645-670. Zbl1280.46024MR2995369
- B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in , Journal of Functional Analysis, 219 (2005), 340-367. Zbl1119.46033MR2109256
- I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Revista Mathematica Complutense, 15 (2002), 417-436. Zbl1142.35375MR1951819
- M. Struwe, A global compactness result for boundary value problems involving limiting nonlinearities, Mathematische Zeitschrift, 187 (1984), 511-517. Zbl0535.35025MR760051
- N.S. Trudinger, On imbedding into Orlicz spaces and some applications, Journal of Mathematics and Mechanics, 17 (1967), 473-484. Zbl0163.36402MR216286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.