Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle

Hajer Bahouri[1]

  • [1] Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050 Université Paris-Est Créteil 61, avenue du Général de Gaulle 94010 Créteil Cedex, France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-11
  • ISSN: 2266-0607

Abstract

top
On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante 1 -oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.

How to cite

top

Bahouri, Hajer. "Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-11. <http://eudml.org/doc/275699>.

@article{Bahouri2014-2015,
abstract = {On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante $\{\bf 1\}$-oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.},
affiliation = {Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050 Université Paris-Est Créteil 61, avenue du Général de Gaulle 94010 Créteil Cedex, France},
author = {Bahouri, Hajer},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle},
url = {http://eudml.org/doc/275699},
year = {2014-2015},
}

TY - JOUR
AU - Bahouri, Hajer
TI - Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
AB - On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante ${\bf 1}$-oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.
LA - fre
UR - http://eudml.org/doc/275699
ER -

References

top
  1. S. Adachi and K. Tanaka, Trudinger type inequalities in N and their best exponents, Proceedings in American Mathematical Society, 128 (2000), 2051-2057. Zbl0980.46020MR1646323
  2. Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Communications in Partial Differential Equations, 29 (2004), 295–322. Zbl1076.46022MR2038154
  3. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, (2011). Zbl1227.35004MR2768550
  4. H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Math, 121 (1999), 131-175. Zbl0919.35089MR1705001
  5. H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, 260 (2011), 208-252. Zbl1217.46017MR2733577
  6. H. Bahouri, M. Majdoub and N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding, the general case, Journal de Mathématiques Pures et Appliquées, 101 (2014), 415-457. Zbl1305.46024MR3179749
  7. H. Bahouri, On the elements involved in the lack of compactness in critical Sobolev embedding, Concentration Analysis and Applications to PDE, Trends in Mathematics, (2013), 1-15. Zbl1291.46030
  8. H. Bahouri, S. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Journal of Differential and Integral Equations, 27 (2014), 233-268. Zbl1324.35167MR3161603
  9. H. Bahouri and G. Perelman, A Fourier approach to the profile decomposition in Orlicz spaces, Mathematical Research Letters, 21 (2014), 33-54. Zbl1311.46030MR3247037
  10. H. Bahouri and I. Gallagher, On the stability in weak topology of the set of global solutions to the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 209 (2013), 569-629. Zbl1283.35061MR3056618
  11. H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, Ser. I 352 (2014), 305-310. Zbl1294.35056MR3186918
  12. H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, http://arxiv.org/abs/1310.0256. Zbl1294.35056MR3186918
  13. I. Ben Ayed and M. K. Zghal, Characterization of the lack of compactness of H r a d 2 ( 4 ) into the Orlicz space, Communications in Contemporary Mathematics, 16 (2014), 1-25. MR3231057
  14. L. Berlyand, P. Mironescu, V. Rybalko and E. Sandier, Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions : existence and bubbling, Communications in Partial Differential Equations, 39 (2014), 946-1005. Zbl1296.35036MR3196191
  15. H. Brézis and J.-M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Archive for Rational Mechanics and Analysis, 89 (1985), 21-86. Zbl0584.49024MR784102
  16. J. Bourgain, A remark on Schrödinger operators, Israel Journal of Mathematics, 77 (1992), 1-16. Zbl0798.35131MR1194782
  17. J. Bourgain, Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math, 42 (1995), 83-112. Zbl0840.42007MR1315543
  18. T. Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proceedings of the Royal Society of Edinburgh. Section A, 84 (1979), 327-346. Zbl0428.35021MR559676
  19. J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimension, Journal of Hyperbolic Differential Equations, 6 (2009), 549-575. Zbl1191.35250MR2568809
  20. R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : I http://arxiv.org/abs/1209.3682. Zbl1315.35130
  21. R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : II http://arxiv.org/abs/1209.3684. Zbl1315.35131
  22. O. Druet, Multibumps analysis in dimension 2 - Quantification of blow up levels, Duke Math. Journal, 132 (2006), 217-269. Zbl1281.35045MR2219258
  23. I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the L t ( L x 3 ) Navier-Stokes regularity criterion, Mathematische Annalen, 355 (2013), 1527-1559. Zbl1291.35180MR3037023
  24. P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations, 3 (1998), 213-233. Zbl0907.46027
  25. P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, Journal of Functional Analysis, 133 (1996), 50–68. Zbl0868.35075
  26. A. Henrot and M. Pierre, Variations et optimistation de formes, Mathématiques et applications, Springer, 48, (2005). Zbl1098.49001MR2512810
  27. S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the two dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849. Zbl1241.35188MR2929605
  28. S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proceedings of the American Mathematical Society, 135 (2007), 87–97. Zbl1130.46018MR2280178
  29. C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212. Zbl1183.35202MR2461508
  30. S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, Journal of Differential equations, 175 (2001), 353-392. Zbl1038.35119MR1855973
  31. J. F. Lam, B. Lippman, and F. Tappert, Self trapped laser beams in plasma, Physics of Fluids, 20 (1977), 1176-1179. 
  32. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Revista Matematica Iberoamericana1(1) (1985), 145-201. Zbl0704.49005MR834360
  33. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II., Revista Matematica Iberoamericana1(2) (1985), 45-121. Zbl0704.49006MR850686
  34. G. Mancini, K. Sandeep, and C.Tintarev, Trudinger-Moser inequality in the hyperbolic space N , Advances in Nonlinear Analysis2 (2013), 309-324. Zbl1274.35435MR3089744
  35. F. Merle and L. Vega, Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D, International Mathematics Research Notices, 8 (1998), 399-425. Zbl0913.35126MR1628235
  36. J. Moser, A sharp form of an inequality of N. Trudinger, Indiana University Mathematics Journal, 20 (1971), 1077-1092. Zbl0203.43701MR301504
  37. A. Moyua, A. Vargas and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in 3 , Duke Mathematical Journal, 96 (1999), 1-28. Zbl0946.42011MR1671214
  38. M.-M. Rao and Z.-D. Ren, Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002), Marcel Dekker Inc. Zbl0997.46027MR1890178
  39. B. Ruf and F. Sani, Sharp Adams-type inequalities in n , Transactions of the American Mathematical Society, 2 (2013), 645-670. Zbl1280.46024MR2995369
  40. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in 2 , Journal of Functional Analysis, 219 (2005), 340-367. Zbl1119.46033MR2109256
  41. I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Revista Mathematica Complutense, 15 (2002), 417-436. Zbl1142.35375MR1951819
  42. M. Struwe, A global compactness result for boundary value problems involving limiting nonlinearities, Mathematische Zeitschrift, 187 (1984), 511-517. Zbl0535.35025MR760051
  43. N.S. Trudinger, On imbedding into Orlicz spaces and some applications, Journal of Mathematics and Mechanics, 17 (1967), 473-484. Zbl0163.36402MR216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.