The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott[1]; Robert Styer[2]

  • [1] Somerville, MA, USA
  • [2] Villanova University 800 Lancaster Avenue Villanova, PA, USA

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 1, page 179-210
  • ISSN: 1246-7405

Abstract

top
We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a > 1 , b > 1 , c > 0 , r > 0 and s > 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) < 2 · 10 15 for each solution; when gcd ( a , b ) > 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.

How to cite

top

Scott, Reese, and Styer, Robert. "The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 179-210. <http://eudml.org/doc/275700>.

@article{Scott2013,
abstract = {We consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c $ in nonnegative integers $x, y$ and integers $u, v \in \lbrace 0,1\rbrace $, for given integers $a&gt;1$, $b&gt;1$, $c&gt;0$, $r&gt;0$ and $s&gt;0$. When $\gcd (ra,sb)=1$, we show that $N \le 3$ except for a finite number of cases all of which satisfy $\max (a,b,r,s, x,y) &lt; 2 \cdot 10^\{15\}$ for each solution; when $\gcd (a,b)&gt;1$, we show that $N \le 3$ except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving $N=3$ solutions.},
affiliation = {Somerville, MA, USA; Villanova University 800 Lancaster Avenue Villanova, PA, USA},
author = {Scott, Reese, Styer, Robert},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pillai’s equation; Exponential Diophantine equations; Pillai's equation; exponential Diophantine equations},
language = {eng},
month = {4},
number = {1},
pages = {179-210},
publisher = {Société Arithmétique de Bordeaux},
title = {The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.},
url = {http://eudml.org/doc/275700},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Scott, Reese
AU - Styer, Robert
TI - The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 179
EP - 210
AB - We consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c $ in nonnegative integers $x, y$ and integers $u, v \in \lbrace 0,1\rbrace $, for given integers $a&gt;1$, $b&gt;1$, $c&gt;0$, $r&gt;0$ and $s&gt;0$. When $\gcd (ra,sb)=1$, we show that $N \le 3$ except for a finite number of cases all of which satisfy $\max (a,b,r,s, x,y) &lt; 2 \cdot 10^{15}$ for each solution; when $\gcd (a,b)&gt;1$, we show that $N \le 3$ except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving $N=3$ solutions.
LA - eng
KW - Pillai’s equation; Exponential Diophantine equations; Pillai's equation; exponential Diophantine equations
UR - http://eudml.org/doc/275700
ER -

References

top
  1. M. Bennett, On some exponential equations of S. S. Pillai. Canadian Journal of Mathematics 53 (2001) no. 5, 897–922. Zbl0984.11014
  2. Y. F. Bilu, Y. Bugeaud, M. Mignotte, Catalan’s Equation, book in preparation. 
  3. Y. Bugeaud, F. Luca, On Pillai’s Diophantine equation. New York J. of Math. 12 (2006), 193–217 (electronic). Zbl1136.11026
  4. R. K. Guy, C. B. Lacampagne, J. L. Selfridge, Primes at a glance. Math. Comp. 48 (1987), 183–202. Zbl0608.10011
  5. B. He, A. Togbé, On the number of solutions of the exponential Diophantine equation a x m - b y n = c . Bull. Aust. Math. Soc. 81 (2010), 177–185. Zbl1251.11019
  6. M. Le, A note on the diophantine equation a x m - b y n = k . Indag. Math. (N. S.) 3 (June 1992), 185–191. Zbl0762.11012
  7. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217–1269. Zbl1013.11043
  8. M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko. Acta Arith. 86 (1998), 101–111. Zbl0919.11051
  9. M. Mignotte, A kit on linear forms in three logarithms, in preparation, February 7, 2008. http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf 
  10. S. S. Pillai, On the inequality 0 &lt; a x - b y n . J. Indian Math. Soc. (1) 19 (1931), 1–11. Zbl57.0236.01
  11. S. S. Pillai, On the equation 2 x - 3 y = 2 X + 3 Y . Bull. Calcutta Soc. 37 (1945), 15–20. Zbl0063.06245
  12. R. Scott, On the Equations p x - b y = c and a x + b y = c z . Journal of Number Theory 44 (1993), no. 2, 153–165. Zbl0786.11020
  13. R. Scott, R. Styer, On p x - q y = c and related three term exponential Diophantine equations with prime bases. Journal of Number Theory 105 (2004), no. 2, 212–234. Zbl1080.11032
  14. R. Scott, R. Styer, On the generalized Pillai equation ± a x ± b y = c . Journal of Number Theory 118 (2006), 236–265. Zbl1146.11020
  15. R. Scott, R. Styer, The generalized Pillai equation ± r a x ± s b y = c . Journal of Number Theory 131 (2011), 1037–1047. Zbl1244.11030
  16. R. Scott, R. Styer, Handling a large bound for a problem on the generalized Pillai equation ± r a x ± s b y = c . Preprint. Zbl1308.11040
  17. T. N. Shorey, On the equation a x m - b y n = k . Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 3, 353–358. Zbl0603.10019
  18. R. Styer, Small two-variable exponential Diophantine equations. Mathematics of Computation 60 (1993), no. 202, 811–816. Zbl0781.11014
  19. M. Waldschmidt, Perfect powers: Pillai’s works and their developments. Arxiv preprint arXiv:0908.4031, August 27, 2009. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.