The number of solutions to the generalized Pillai equation .
Reese Scott[1]; Robert Styer[2]
- [1] Somerville, MA, USA
- [2] Villanova University 800 Lancaster Avenue Villanova, PA, USA
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 179-210
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topScott, Reese, and Styer, Robert. "The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 179-210. <http://eudml.org/doc/275700>.
@article{Scott2013,
abstract = {We consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c $ in nonnegative integers $x, y$ and integers $u, v \in \lbrace 0,1\rbrace $, for given integers $a>1$, $b>1$, $c>0$, $r>0$ and $s>0$. When $\gcd (ra,sb)=1$, we show that $N \le 3$ except for a finite number of cases all of which satisfy $\max (a,b,r,s, x,y) < 2 \cdot 10^\{15\}$ for each solution; when $\gcd (a,b)>1$, we show that $N \le 3$ except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving $N=3$ solutions.},
affiliation = {Somerville, MA, USA; Villanova University 800 Lancaster Avenue Villanova, PA, USA},
author = {Scott, Reese, Styer, Robert},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pillai’s equation; Exponential Diophantine equations; Pillai's equation; exponential Diophantine equations},
language = {eng},
month = {4},
number = {1},
pages = {179-210},
publisher = {Société Arithmétique de Bordeaux},
title = {The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.},
url = {http://eudml.org/doc/275700},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Scott, Reese
AU - Styer, Robert
TI - The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 179
EP - 210
AB - We consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c $ in nonnegative integers $x, y$ and integers $u, v \in \lbrace 0,1\rbrace $, for given integers $a>1$, $b>1$, $c>0$, $r>0$ and $s>0$. When $\gcd (ra,sb)=1$, we show that $N \le 3$ except for a finite number of cases all of which satisfy $\max (a,b,r,s, x,y) < 2 \cdot 10^{15}$ for each solution; when $\gcd (a,b)>1$, we show that $N \le 3$ except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving $N=3$ solutions.
LA - eng
KW - Pillai’s equation; Exponential Diophantine equations; Pillai's equation; exponential Diophantine equations
UR - http://eudml.org/doc/275700
ER -
References
top- M. Bennett, On some exponential equations of S. S. Pillai. Canadian Journal of Mathematics 53 (2001) no. 5, 897–922. Zbl0984.11014
- Y. F. Bilu, Y. Bugeaud, M. Mignotte, Catalan’s Equation, book in preparation.
- Y. Bugeaud, F. Luca, On Pillai’s Diophantine equation. New York J. of Math. 12 (2006), 193–217 (electronic). Zbl1136.11026
- R. K. Guy, C. B. Lacampagne, J. L. Selfridge, Primes at a glance. Math. Comp. 48 (1987), 183–202. Zbl0608.10011
- B. He, A. Togbé, On the number of solutions of the exponential Diophantine equation . Bull. Aust. Math. Soc. 81 (2010), 177–185. Zbl1251.11019
- M. Le, A note on the diophantine equation . Indag. Math. (N. S.) 3 (June 1992), 185–191. Zbl0762.11012
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217–1269. Zbl1013.11043
- M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko. Acta Arith. 86 (1998), 101–111. Zbl0919.11051
- M. Mignotte, A kit on linear forms in three logarithms, in preparation, February 7, 2008. http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf
- S. S. Pillai, On the inequality . J. Indian Math. Soc. (1) 19 (1931), 1–11. Zbl57.0236.01
- S. S. Pillai, On the equation . Bull. Calcutta Soc. 37 (1945), 15–20. Zbl0063.06245
- R. Scott, On the Equations and . Journal of Number Theory 44 (1993), no. 2, 153–165. Zbl0786.11020
- R. Scott, R. Styer, On and related three term exponential Diophantine equations with prime bases. Journal of Number Theory 105 (2004), no. 2, 212–234. Zbl1080.11032
- R. Scott, R. Styer, On the generalized Pillai equation . Journal of Number Theory 118 (2006), 236–265. Zbl1146.11020
- R. Scott, R. Styer, The generalized Pillai equation . Journal of Number Theory 131 (2011), 1037–1047. Zbl1244.11030
- R. Scott, R. Styer, Handling a large bound for a problem on the generalized Pillai equation . Preprint. Zbl1308.11040
- T. N. Shorey, On the equation . Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 3, 353–358. Zbl0603.10019
- R. Styer, Small two-variable exponential Diophantine equations. Mathematics of Computation 60 (1993), no. 202, 811–816. Zbl0781.11014
- M. Waldschmidt, Perfect powers: Pillai’s works and their developments. Arxiv preprint arXiv:0908.4031, August 27, 2009.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.