Resonant averaging for weakly nonlinear stochastic Schrödinger equations
- [1] IMJ Universite Paris-Diderot (Paris 7) 5 rue Thomas Mann 75205 Paris Cedex 13
Séminaire Laurent Schwartz — EDP et applications (2013-2014)
- Volume: 49, Issue: 4, page 1-9
- ISSN: 2266-0607
Access Full Article
topHow to cite
topKuksin, Sergei B.. "Resonant averaging for weakly nonlinear stochastic Schrödinger equations." Séminaire Laurent Schwartz — EDP et applications 49.4 (2013-2014): 1-9. <http://eudml.org/doc/275702>.
@article{Kuksin2013-2014,
affiliation = {IMJ Universite Paris-Diderot (Paris 7) 5 rue Thomas Mann 75205 Paris Cedex 13},
author = {Kuksin, Sergei B.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {complex Ginzburg-Landau equation; small nonlinearity; limiting behaviour; stationary measure; averaging; effective equation},
language = {eng},
number = {4},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Resonant averaging for weakly nonlinear stochastic Schrödinger equations},
url = {http://eudml.org/doc/275702},
volume = {49},
year = {2013-2014},
}
TY - JOUR
AU - Kuksin, Sergei B.
TI - Resonant averaging for weakly nonlinear stochastic Schrödinger equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 49
IS - 4
SP - 1
EP - 9
LA - eng
KW - complex Ginzburg-Landau equation; small nonlinearity; limiting behaviour; stationary measure; averaging; effective equation
UR - http://eudml.org/doc/275702
ER -
References
top- J. Cardy, G. Falkovich, and K. Gawedzki, Non-equilibrium Statistical Mechanics and Turbulence, Cambridge University Press, Cambridge, 2008. MR2568424
- S. Kuksin and A. Maiocchi, Derivation of the Kolmogorov-Zakharov equation from the resonant-averaged stochastic NLS equation, http://arxiv.org/abs/1311.6794. Zbl1327.35462
- —, Resonant averaging for weakly nonlinear stochastic Schrödinger equations, http://arxiv.org/abs/1309.5022.
- S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension, Stoch PDE: Anal Comp 1 (2013), 389–423. Zbl1287.60093
- S. B. Kuksin and A. L. Piatnitski, Khasminskii - Whitham averaging for randomly perturbed KdV equation, J. Math. Pures Appl. 89 (2008), 400–428. Zbl1148.35077MR2401144
- S. B. Kuksin, Damped-driven KdV and effective equations for long-time behaviour of its solutions, GAFA 20 (2010), 1431–1463. Zbl1231.35205MR2738999
- —, Weakly nonlinear stochastic CGL equations, Ann. Inst. H. Poincaré - PR 49 (2013), 1033–1056. MR3127912
- S. Nazarenko, Wave Turbulence, Springer, Berlin, 2011. Zbl1220.76006MR3014432
- R. Peierls, On the kinetic theory of thermal conduction in crystals, Selected Scientific Papers of Sir Rudolf Peierls, with commentary, World Scientific, Singapore, 1997, pp. 15–48.
- V. E. Zakharov and V. S. L’vov, Statistical description of nonlinear wave fields, Radiophys. Quan. Electronics 18 (1975), 1084–1097. MR462184
- V. Zakharov, V. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence, Springer, Berlin, 1992. Zbl0786.76002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.