Potentiels variables et équations dispersives
- [1] Department of Mathematics University of California, Berkeley 970 Evans Hall Berkeley, CA 94720-3840
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- page 1-11
- ISSN: 2266-0607
Access Full Article
topHow to cite
topReferences
top- S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), No. 2, pp. 151–218. Zbl0315.47007MR397194
- M. Beceanu, A structure formula for wave operators on , to appear in AJM. Zbl06293185
- M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J. 159, 3 (2011), pp. 351–559. Zbl1229.35224MR2831875
- M. Beceanu, A. Soffer, The Schrödinger equation with a potential in rough motion, Comm. PDE, 37 :6, 969-1000. Zbl1245.35099MR2924464
- J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, 1976. Zbl0344.46071MR482275
- J. Bourgain, Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential, Commun. Math. Phys. 204, pp. 207–247 (1999). Zbl0938.35150MR1705671
- J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential, J. Anal. Math. 77, 315–348 (1999). Zbl0938.35026MR1753490
- J. Bourgain, On long-time behaviour of solutions of linear Schrödinger equations with smooth time-dependent potential, Geometric aspects of functional analysis, pp. 99–113, Lecture Notes in Math., 1807, Springer, Berlin, 2003. Zbl1071.35038MR2083390
- M. Christ, A. Kiselev, Maximal operators associated to filtrations, J. Funct. Anal. 179 (2001), pp. 409–425. Zbl0974.47025MR1809116
- O. Costin, J. L. Lebowitz, S. Tanveer, Ionization of Coulomb systems in by time periodic forcing of arbitrary size, Comm. Math. Phys. 296 (2010), no. 3, pp. 681–738. Zbl1209.37087MR2628820
- J.-M. Delort, Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds, Int. Math. Res. Not. 12, pp. 2305–2328 (2010). Zbl1229.35040MR2652223
- D. Fang, Q. Zhang, On Growth of Sobolev Norms in Linear Schrödinger Equations with Time Dependent Gevrey Potential, Journal of Dynamics and Differential Equations, June 2012, Volume 24, Issue 2, pp. 151–180. Zbl1247.35118MR2915755
- A. Galtbayar, A. Jensen, K. Yajima, Local time-decay of solutions to Schrödinger equations with time-periodic potentials, Journal of Statistical Physics, Vol. 116, No. 1–4, 2004, pp. 231–282. Zbl1138.81018MR2083143
- M. Goldberg, Strichartz estimates for the Schrödinger equation with time-periodic potentials, J. Funct. Anal., Vol. 256, Issue 3, 2009, pp. 718–746. Zbl1161.35004MR2484934
- A. D. Ionescu, W. Schlag, Agmon–Kato–Kuroda theorems for a large class of perturbations, Duke Math. J. 131, 3 (2006), pp. 397–591. Zbl1092.35073MR2219246
- M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. Math. J. 120 (1998), pp. 955–980. Zbl0922.35028MR1646048
- I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, pp. 451–513. Zbl1063.35035MR2038194
- E. Stein, Harmonic Analysis, Princeton University Press, Princeton, 1994. Zbl0821.42001
- W.-M. Wang, Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations, Commun. Partial Differ. Equ. 33, pp. 2164–2179 (2008). Zbl1154.35450MR2475334
- K. Yajima, The -continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), pp. 551–581. Zbl0837.35039MR1331331