Arithmetic Properties of Generalized Rikuna Polynomials
Z. Chonoles[1]; J. Cullinan[2]; H. Hausman[3]; A.M. Pacelli[3]; S. Pegado[3]; F. Wei[4]
- [1] Department of Mathematics, The University of Chicago, 5734 S. University Avenue Chicago, IL 60637, USA
- [2] Department of Mathematics, Bard College, Annandale-On-Hudson, NY 12504, USA
- [3] Department of Mathematics, Williams College, Williamstown, MA 01267, USA
- [4] Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138, USA
Publications mathématiques de Besançon (2014)
- Issue: 1, page 19-33
- ISSN: 1958-7236
Access Full Article
topAbstract
topHow to cite
topChonoles, Z., et al. "Arithmetic Properties of Generalized Rikuna Polynomials." Publications mathématiques de Besançon (2014): 19-33. <http://eudml.org/doc/275709>.
@article{Chonoles2014,
abstract = {Fix an integer $\ell \ge 3$. Rikuna introduced a polynomial $r(x,t)$ defined over a function field $K(t)$ whose Galois group is cyclic of order $\ell $, where $K$ satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials$\lbrace r_n(x,t) \rbrace _\{n \ge 1\}$ of degree $\ell ^n$. The $r_n(x,t)$ are constructed iteratively from the $r(x,t)$. We compute the Galois groups of the $r_n(x,t)$ for odd $\ell $ over an arbitrary base field and give applications to arithmetic dynamical systems.},
affiliation = {Department of Mathematics, The University of Chicago, 5734 S. University Avenue Chicago, IL 60637, USA; Department of Mathematics, Bard College, Annandale-On-Hudson, NY 12504, USA; Department of Mathematics, Williams College, Williamstown, MA 01267, USA; Department of Mathematics, Williams College, Williamstown, MA 01267, USA; Department of Mathematics, Williams College, Williamstown, MA 01267, USA; Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138, USA},
author = {Chonoles, Z., Cullinan, J., Hausman, H., Pacelli, A.M., Pegado, S., Wei, F.},
journal = {Publications mathématiques de Besançon},
keywords = {postcritically finite; Galois group; cyclotomic field},
language = {eng},
number = {1},
pages = {19-33},
publisher = {Presses universitaires de Franche-Comté},
title = {Arithmetic Properties of Generalized Rikuna Polynomials},
url = {http://eudml.org/doc/275709},
year = {2014},
}
TY - JOUR
AU - Chonoles, Z.
AU - Cullinan, J.
AU - Hausman, H.
AU - Pacelli, A.M.
AU - Pegado, S.
AU - Wei, F.
TI - Arithmetic Properties of Generalized Rikuna Polynomials
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 1
SP - 19
EP - 33
AB - Fix an integer $\ell \ge 3$. Rikuna introduced a polynomial $r(x,t)$ defined over a function field $K(t)$ whose Galois group is cyclic of order $\ell $, where $K$ satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials$\lbrace r_n(x,t) \rbrace _{n \ge 1}$ of degree $\ell ^n$. The $r_n(x,t)$ are constructed iteratively from the $r(x,t)$. We compute the Galois groups of the $r_n(x,t)$ for odd $\ell $ over an arbitrary base field and give applications to arithmetic dynamical systems.
LA - eng
KW - postcritically finite; Galois group; cyclotomic field
UR - http://eudml.org/doc/275709
ER -
References
top- W. Aitken, F. Hajir, C. Maire. Finitely ramified iterated extensions. Int. Math. Res. Not.2005, no. 14, 855-880. Zbl1160.11356MR2146860
- J. Cullinan, F. Hajir. Ramification in iterated towers for rational functions. Manuscripta Math.137 (2012), no. 3-4, 273-286. Zbl1235.14023MR2875279
- M. Daub, J. Lang, M. Merling, A. Pacelli, N. Pitiwan, M. Rosen. Function Fields with Class Number Indivisible by a Prime . Acta Arith.150 (2011), no. 4, 339-359. Zbl1263.11098MR2847264
- R. Jones, J. Rouse. Iterated endomorphisms of abelian algebraic groups. Proc. Lond. Math. Soc.100 (2010), no. 3, 763-794. Zbl1244.11057MR2640290
- Y. Kishi. A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory102 (2003), no. 1, 90-106. Zbl1034.11060MR1994474
- T. Komatsu. Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory. Manuscripta Math. 114 (2004) 265-279. Zbl1093.11068MR2075966
- S. Lang, Algebra, Graduate Texts in Mathematics 211. Springer-Verlag, New York, 2002. Zbl0984.00001MR1878556
- E. Lehmer. Connection between Gaussian periods and cyclic units. Math. Comp.50 (1988), no. 182, 535-541. Zbl0652.12004MR929551
- J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999. Zbl0747.11001MR1697859
- R.W.K. Odoni. The Galois theory of iterates and composites of polynomials. Proc. London. Math. Soc.51 (1985), no. 3, 385-414. Zbl0622.12011MR805714
- Y. Rikuna. On simple families of cyclic polynomials. Proc. Amer. Math. Soc.130 (2002), no. 8, 2215-2218 Zbl0990.12005MR1896400
- R. Schoof, L. Washington. Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp.50 (1988), no. 182, 543-556. Zbl0649.12007MR929552
- D. Shanks. The simplest cubic fields. Math. Comp.28 (1974), 1137-1157 Zbl0307.12005MR352049
- Y.Y. Shen, L.C. Washington. A family of real -tic fields. Trans. Amer. Math. Soc.345 (1994), no. 1, 413-434. Zbl0822.11071MR1264151
- Y.Y. Shen, L.C. Washington. A family of real -tic fields. Canad. J. Math.47 (1995), no. 3, 655-672. Zbl0834.11041MR1346157
- J. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics, 241. Springer, New York, 2007. Zbl1130.37001MR2316407
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.