Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
- [1] CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- page 1-22
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topLewin, Mathieu. "Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov." Séminaire Laurent Schwartz — EDP et applications (2012-2013): 1-22. <http://eudml.org/doc/275712>.
@article{Lewin2012-2013,
abstract = {Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre $N$ de particules et dans le régime de champ moyen (l’interaction est multipliée par $1/N$). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.},
affiliation = {CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France},
author = {Lewin, Mathieu},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-22},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov},
url = {http://eudml.org/doc/275712},
year = {2012-2013},
}
TY - JOUR
AU - Lewin, Mathieu
TI - Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 22
AB - Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre $N$ de particules et dans le régime de champ moyen (l’interaction est multipliée par $1/N$). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.
LA - fre
UR - http://eudml.org/doc/275712
ER -
References
top- Z. Ammari and F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincaré, 9 (2008), pp. 1503–1574. http://dx.doi.org/10.1007/s00023-008-0393-5. Zbl1171.81014MR2465733
- Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011), pp. 585–626. Zbl1251.81062MR2802894
- V. Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., 21 (1991), pp. 139–149. Zbl0725.47049MR1093525
- V. Bach, R. Lewis, E. H. Lieb, and H. Siedentop, On the number of bound states of a bosonic -particle Coulomb system, Math. Z., 214 (1993), pp. 441–459. Zbl0852.47036MR1245205
- B. Baumgartner, On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionisation, J. Phys. A, 17 (1984), pp. 1593–1601. Zbl0541.49020MR750572
- G. Ben Arous, K. Kirkpatrick, and B. Schlein, A Central Limit Theorem in Many-Body Quantum Dynamics, http://arxiv.org/abs/1111.6999, (2011). Zbl1280.81157
- R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, 50 (1983), pp. 1771–1774.
- F. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, 1966. Zbl0151.44001MR208930
- N. N. Bogoliubov, About the theory of superfluidity, Izv. Akad. Nauk SSSR, 11 (1947), p. 77. MR22177
- F. Calogero, Solution of the one-dimensional -body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), pp. 419–436. Zbl1002.70558MR280103
- F. Calogero and C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., 10 (1969), pp. 562–569. MR339719
- H. D. Cornean, J. Derezinski, and P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous bose gas, J. Math. Phys., 50 (2009), p. 062103. Zbl1216.82006MR2541168
- B. De Finetti, Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, 1931. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali. Zbl57.0610.01
- P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), pp. 745–764. Zbl0434.60034MR577313
- L. Erdös, B. Schlein, and H.-T. Yau, Ground-state energy of a low-density Bose gas : A second-order upper bound, Phys. Rev. A, 78 (2008), p. 053627.
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68 (1979), pp. 45–68. Zbl0443.35068MR539736
- M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), pp. 516–523. Zbl0098.21704MR128913
- A. Giuliani and R. Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135 (2009), pp. 915–934. Zbl1172.82006MR2548599
- P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, http://arxiv.org/abs/1205.5259, (2012). Zbl1273.82007MR2824481
- M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294 (2010), pp. 273–301. Zbl1208.82030MR2575484
- M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228 (2011), pp. 1788–1815. Zbl1226.82033MR2824569
- K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), pp. 265–277. MR332046
- E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), pp. 470–501. Zbl0066.29604MR76206
- R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33 (1975/76), pp. 343–351. Zbl0304.60001MR397421
- L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358. Zbl0027.18505
- M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. Zbl1216.81180MR2781970
- M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, preprint http://arxiv.org/abs/1303.0981, (2013). Zbl1316.81095
- M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint http://arxiv.org/abs/1211.2778, (2012). Zbl1318.82030
- E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), pp. 1616–1624. Zbl0138.23002MR156631
- E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A, 70 (1979), pp. 444–446. MR588128
- E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), pp. 1605–1616. Zbl0138.23001MR156630
- E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., 19 (1980), pp. 427–439.
- E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010. Zbl1179.81004MR2583992
- E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005. Zbl1104.82012MR2143817
- E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), pp. 127–163. Zbl1042.82004MR1815028
- E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., 252 (2004), pp. 485–534. Zbl1124.82303MR2104887
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. Zbl0704.49004MR778970
- P.-L. Lions, Mean-field games and applications. Lectures at the Collège de France, unpublished, Nov 2007. Zbl1205.91027
- P. T. Nam, Contributions to the rigorous study of the structure of atoms, PhD thesis, University of Copenhagen, 2011.
- O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104 (1956), pp. 576–584. Zbl0071.44701
- D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., 121 (1989), pp. 271–282. Zbl0682.46054MR985399
- G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, 62 (1989), pp. 980–1003. Zbl0938.82501MR1034151
- M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. Zbl0242.46001MR493420
- E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, http://arxiv.org/abs/1201.3503, (2012). Zbl1328.82006
- E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313 (2012), pp. 635–743. Zbl1252.35034MR2945619
- R. Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306 (2011), pp. 565–578. Zbl1226.82039MR2824481
- J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–172. Zbl0712.35075MR1065245
- J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818. Zbl1126.82006MR2238912
- J. P. Solovej, Many body quantum mechanics. LMU, 2007. Lecture notes.
- E. Størmer, Symmetric states of infinite tensor products of -algebras, J. Functional Analysis, 3 (1969), pp. 48–68. Zbl0167.43403MR241992
- B. Sutherland, Quantum Many-Body Problem in One Dimension : Ground State, J. Mathematical Phys., 12 (1971), pp. 246–250.
- B. Sutherland, Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Mathematical Phys., 12 (1971), pp. 251–256.
- A. Sütő, Thermodynamic limit and proof of condensation for trapped bosons, J. Statist. Phys., 112 (2003), pp. 375–396. Zbl1035.82007MR1991602
- R. F. Werner, Large deviations and mean-field quantum systems, in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349–381. Zbl0788.60126MR1186674
- T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature : General theory, Phys. Rev. A, 58 (1998), pp. 1465–1474.
- H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136 (2009), pp. 453–503. Zbl1200.82002MR2529681
- J. Yngvason, The interacting Bose gas : A continuing challenge, Phys. Particles Nuclei, 41 (2010), pp. 880–884.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.