Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov

Mathieu Lewin[1]

  • [1] CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France

Séminaire Laurent Schwartz — EDP et applications (2012-2013)

  • page 1-22
  • ISSN: 2266-0607

Abstract

top
Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre N de particules et dans le régime de champ moyen (l’interaction est multipliée par 1 / N ). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.

How to cite

top

Lewin, Mathieu. "Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov." Séminaire Laurent Schwartz — EDP et applications (2012-2013): 1-22. <http://eudml.org/doc/275712>.

@article{Lewin2012-2013,
abstract = {Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre $N$ de particules et dans le régime de champ moyen (l’interaction est multipliée par $1/N$). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.},
affiliation = {CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France},
author = {Lewin, Mathieu},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-22},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov},
url = {http://eudml.org/doc/275712},
year = {2012-2013},
}

TY - JOUR
AU - Lewin, Mathieu
TI - Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 22
AB - Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre $N$ de particules et dans le régime de champ moyen (l’interaction est multipliée par $1/N$). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.
LA - fre
UR - http://eudml.org/doc/275712
ER -

References

top
  1. Z. Ammari and F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincaré, 9 (2008), pp. 1503–1574. http://dx.doi.org/10.1007/s00023-008-0393-5. Zbl1171.81014MR2465733
  2. Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011), pp. 585–626. Zbl1251.81062MR2802894
  3. V. Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., 21 (1991), pp. 139–149. Zbl0725.47049MR1093525
  4. V. Bach, R. Lewis, E. H. Lieb, and H. Siedentop, On the number of bound states of a bosonic N -particle Coulomb system, Math. Z., 214 (1993), pp. 441–459. Zbl0852.47036MR1245205
  5. B. Baumgartner, On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionisation, J. Phys. A, 17 (1984), pp. 1593–1601. Zbl0541.49020MR750572
  6. G. Ben Arous, K. Kirkpatrick, and B. Schlein, A Central Limit Theorem in Many-Body Quantum Dynamics, http://arxiv.org/abs/1111.6999, (2011). Zbl1280.81157
  7. R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, 50 (1983), pp. 1771–1774. 
  8. F. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, 1966. Zbl0151.44001MR208930
  9. N. N. Bogoliubov, About the theory of superfluidity, Izv. Akad. Nauk SSSR, 11 (1947), p. 77. MR22177
  10. F. Calogero, Solution of the one-dimensional N -body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), pp. 419–436. Zbl1002.70558MR280103
  11. F. Calogero and C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., 10 (1969), pp. 562–569. MR339719
  12. H. D. Cornean, J. Derezinski, and P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous bose gas, J. Math. Phys., 50 (2009), p. 062103. Zbl1216.82006MR2541168
  13. B. De Finetti, Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, 1931. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali. Zbl57.0610.01
  14. P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), pp. 745–764. Zbl0434.60034MR577313
  15. L. Erdös, B. Schlein, and H.-T. Yau, Ground-state energy of a low-density Bose gas : A second-order upper bound, Phys. Rev. A, 78 (2008), p. 053627. 
  16. J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68 (1979), pp. 45–68. Zbl0443.35068MR539736
  17. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), pp. 516–523. Zbl0098.21704MR128913
  18. A. Giuliani and R. Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135 (2009), pp. 915–934. Zbl1172.82006MR2548599
  19. P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, http://arxiv.org/abs/1205.5259, (2012). Zbl1273.82007MR2824481
  20. M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294 (2010), pp. 273–301. Zbl1208.82030MR2575484
  21. M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228 (2011), pp. 1788–1815. Zbl1226.82033MR2824569
  22. K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), pp. 265–277. MR332046
  23. E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), pp. 470–501. Zbl0066.29604MR76206
  24. R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33 (1975/76), pp. 343–351. Zbl0304.60001MR397421
  25. L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358. Zbl0027.18505
  26. M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. Zbl1216.81180MR2781970
  27. M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, preprint http://arxiv.org/abs/1303.0981, (2013). Zbl1316.81095
  28. M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint http://arxiv.org/abs/1211.2778, (2012). Zbl1318.82030
  29. E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), pp. 1616–1624. Zbl0138.23002MR156631
  30. E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A, 70 (1979), pp. 444–446. MR588128
  31. E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), pp. 1605–1616. Zbl0138.23001MR156630
  32. E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., 19 (1980), pp. 427–439. 
  33. E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010. Zbl1179.81004MR2583992
  34. E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005. Zbl1104.82012MR2143817
  35. E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), pp. 127–163. Zbl1042.82004MR1815028
  36. E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., 252 (2004), pp. 485–534. Zbl1124.82303MR2104887
  37. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. Zbl0704.49004MR778970
  38. P.-L. Lions, Mean-field games and applications. Lectures at the Collège de France, unpublished, Nov 2007. Zbl1205.91027
  39. P. T. Nam, Contributions to the rigorous study of the structure of atoms, PhD thesis, University of Copenhagen, 2011. 
  40. O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104 (1956), pp. 576–584. Zbl0071.44701
  41. D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., 121 (1989), pp. 271–282. Zbl0682.46054MR985399
  42. G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, 62 (1989), pp. 980–1003. Zbl0938.82501MR1034151
  43. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. Zbl0242.46001MR493420
  44. E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, http://arxiv.org/abs/1201.3503, (2012). Zbl1328.82006
  45. E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313 (2012), pp. 635–743. Zbl1252.35034MR2945619
  46. R. Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306 (2011), pp. 565–578. Zbl1226.82039MR2824481
  47. J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–172. Zbl0712.35075MR1065245
  48. J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818. Zbl1126.82006MR2238912
  49. J. P. Solovej, Many body quantum mechanics. LMU, 2007. Lecture notes. 
  50. E. Størmer, Symmetric states of infinite tensor products of C * -algebras, J. Functional Analysis, 3 (1969), pp. 48–68. Zbl0167.43403MR241992
  51. B. Sutherland, Quantum Many-Body Problem in One Dimension : Ground State, J. Mathematical Phys., 12 (1971), pp. 246–250. 
  52. B. Sutherland, Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Mathematical Phys., 12 (1971), pp. 251–256. 
  53. A. Sütő, Thermodynamic limit and proof of condensation for trapped bosons, J. Statist. Phys., 112 (2003), pp. 375–396. Zbl1035.82007MR1991602
  54. R. F. Werner, Large deviations and mean-field quantum systems, in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349–381. Zbl0788.60126MR1186674
  55. T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature : General theory, Phys. Rev. A, 58 (1998), pp. 1465–1474. 
  56. H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136 (2009), pp. 453–503. Zbl1200.82002MR2529681
  57. J. Yngvason, The interacting Bose gas : A continuing challenge, Phys. Particles Nuclei, 41 (2010), pp. 880–884. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.