Curvature cones and the Ricci flow.

Thomas Richard[1]

  • [1] Room 659, Huxley Building Mathematics Department Imperial College London SW7 2AZ (UK)

Séminaire de théorie spectrale et géométrie (2012-2014)

  • Volume: 31, page 197-220
  • ISSN: 1624-5458

Abstract

top
This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points.First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems.We then describe some recent results which give restrictions on general preserved conditions.The paper ends with some open questions on these matters.

How to cite

top

Richard, Thomas. "Curvature cones and the Ricci flow.." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 197-220. <http://eudml.org/doc/275718>.

@article{Richard2012-2014,
abstract = {This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points.First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems.We then describe some recent results which give restrictions on general preserved conditions.The paper ends with some open questions on these matters.},
affiliation = {Room 659, Huxley Building Mathematics Department Imperial College London SW7 2AZ (UK)},
author = {Richard, Thomas},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {197-220},
publisher = {Institut Fourier},
title = {Curvature cones and the Ricci flow.},
url = {http://eudml.org/doc/275718},
volume = {31},
year = {2012-2014},
}

TY - JOUR
AU - Richard, Thomas
TI - Curvature cones and the Ricci flow.
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 197
EP - 220
AB - This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points.First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems.We then describe some recent results which give restrictions on general preserved conditions.The paper ends with some open questions on these matters.
LA - eng
UR - http://eudml.org/doc/275718
ER -

References

top
  1. Ben Andrews, Christopher Hopper, The Ricci flow in Riemannian geometry, 2011 (2011), Springer, Heidelberg Zbl1214.53002MR2760593
  2. Laurent Bessières, Gérard Besson, Sylvain Maillot, Michel Boileau, Joan Porti, Geometrisation of 3-manifolds, 13 (2010), European Mathematical Society (EMS), Zürich Zbl1244.57003MR2683385
  3. Christoph Böhm, Burkhard Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), 1079-1097 Zbl1185.53073MR2415394
  4. Simon Brendle, Ricci flow and the sphere theorem, 111 (2010), American Mathematical Society, Providence, RI Zbl1196.53001MR2583938
  5. Simon Brendle, Richard Schoen, Manifolds with 1 / 4 -pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), 287-307 Zbl1251.53021MR2449060
  6. Haiwen Chen, Pointwise 1 4 -pinched 4 -manifolds, Ann. Global Anal. Geom. 9 (1991), 161-176 Zbl0752.53021MR1136125
  7. Bennett Chow, Dan Knopf, The Ricci flow: an introduction, 110 (2004), American Mathematical Society, Providence, RI Zbl1086.53085MR2061425
  8. Bennett Chow, Peng Lu, Lei Ni, Hamilton’s Ricci flow, 77 (2006), American Mathematical Society, Providence, RI; Science Press, New York Zbl1118.53001MR2274812
  9. M. Gromov, Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano 61 (1991), 9-123 (1994) Zbl0820.53035MR1297501
  10. H. A. Gururaja, Soma Maity, Harish Seshadri, On Wilking’s criterion for the Ricci flow, Math. Z. 274 (2013), 471-481 Zbl1267.53068MR3054339
  11. Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
  12. Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153-179 Zbl0628.53042MR862046
  13. Gerhard Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), 47-62 Zbl0606.53026MR806701
  14. Bruce Kleiner, John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), 2587-2855 Zbl1204.53033MR2460872
  15. Christophe Margerin, Une caractérisation optimale de la structure différentielle standard de la sphère en terme de courbure pour (presque) toutes les dimensions. I. Les énoncés, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 605-607 Zbl0809.53042MR1298291
  16. Davi Máximo, Non-negative Ricci curvature on closed manifolds under Ricci flow, Proc. Amer. Math. Soc. 139 (2011), 675-685 Zbl1215.53062MR2736347
  17. Mario J. Micallef, John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), 199-227 Zbl0661.53027MR924677
  18. John Morgan, Gang Tian, Ricci flow and the Poincaré conjecture, 3 (2007), American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA Zbl1179.57045MR2334563
  19. Huy T. Nguyen, Isotropic curvature and the Ricci flow, Int. Math. Res. Not. IMRN (2010), 536-558 Zbl1190.53068MR2587576
  20. Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications Zbl1130.53001
  21. Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds Zbl1130.53003
  22. Grisha Perelman, Ricci flow with surgery on three-manifolds Zbl1130.53002
  23. Thomas Richard, Harish Seshadri, Noncoercive Ricci flow invariant curvature cones Zbl1314.53122
  24. Thomas Richard, Harish Seshadri, Positive isotropic curvature and self-duality in dimension 4 Zbl1334.53035
  25. Peter Topping, Lectures on the Ricci flow, 325 (2006), Cambridge University Press, Cambridge Zbl1105.58013MR2265040
  26. Burkhard Wilking, A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. Reine Angew. Math. 679 (2013), 223-247 Zbl06185842MR3065160

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.