Diffusion de champs de vecteur conservant leur topologie et relaxation magnétique
Yann Brenier[1]
- [1] CNRS, Centre de mathématiques Laurent Schwartz École Polytechnique 91128 Palaiseau France
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- page 1-10
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser , 2008. Zbl1145.35001MR2401600
- L. Ambrosio, N. Gigli, G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Inventiones 2013, http://cvgmt.sns.it/paper/1645/. Zbl1312.53056
- V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag 1998. Zbl0902.76001MR1612569
- Y. Brenier, Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation,http://arxiv.org/abs/1304.4562. Zbl1294.35077
- Y. Brenier, C. De Lellis, L. Székelyhidi, László, Jr. Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys. 305 (2011) 351-361. Zbl1219.35182MR2805464
- S.Demoulini, D. Stuart, A. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal. 205 (2012) 927-961. Zbl1282.74032MR2960036
- M. Freedman, Z-X He, Divergence-free fields : energy and asymptotic crossing number, Ann. of Math. (2) 134 (1991) 189-229. Zbl0746.57011MR1114611
- N. Gigli, On the Heat flow on metric measure spaces : existence, uniqueness and stability, Calc. Var. Part. Diff. Eq., 39 (2010) 101-120. Zbl1200.35178MR2659681
- N. Gigli, K. Kuwada, S. I. Ohta, Heat Flow on Alexandrov spaces, CPAM 66 (2013) 307-331. Zbl1267.58014MR3008226
- R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998) 1-17. Zbl0915.35120MR1617171
- P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3. 1996. Zbl0908.76004MR1422251
- E. Madelung, Quanten theorie in Hydrodynamischer Form, Zeit. F. Physik 40 (1927) 322.
- H. K. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology, J. Fluid Mech. 159 (1985) 359-378. Zbl0616.76121MR819398
- T. Nishiyama, Construction of the three-dimensional stationary Euler flows from pseudo-advected vorticity equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003) 2393-2398. Zbl1041.76009MR2011347
- T. Nishiyama, Magnetohydrodynamic approaches to measure-valued solutions of the two-dimensional stationary Euler equations, Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007) 139-154. Zbl1211.76154MR2325710
- M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983) 635-664. Zbl0524.76099MR716200