From bosonic grand-canonical ensembles to nonlinear Gibbs measures

Nicolas Rougerie[1]

  • [1] Université Grenoble 1 & CNRS, LPMMC (UMR 5493), B.P. 166, F-38042 Grenoble, France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-17
  • ISSN: 2266-0607

Abstract

top
In a recent paper, in collaboration with Mathieu Lewin and Phan Thành Nam, we showed that nonlinear Gibbs measures based on Gross-Pitaevskii like functionals could be derived from many-body quantum mechanics, in a mean-field limit. This text summarizes these findings. It focuses on the simplest, but most physically relevant, case we could treat so far, namely that of the defocusing cubic NLS functional on a 1D interval. The measure obtained in the limit, which lives over H 1 / 2 - ϵ , has been previously shown to be invariant under the NLS flow by Bourgain.

How to cite

top

Rougerie, Nicolas. "From bosonic grand-canonical ensembles to nonlinear Gibbs measures." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-17. <http://eudml.org/doc/275733>.

@article{Rougerie2014-2015,
abstract = {In a recent paper, in collaboration with Mathieu Lewin and Phan Thành Nam, we showed that nonlinear Gibbs measures based on Gross-Pitaevskii like functionals could be derived from many-body quantum mechanics, in a mean-field limit. This text summarizes these findings. It focuses on the simplest, but most physically relevant, case we could treat so far, namely that of the defocusing cubic NLS functional on a 1D interval. The measure obtained in the limit, which lives over $H^\{1/2-\epsilon \}$, has been previously shown to be invariant under the NLS flow by Bourgain.},
affiliation = {Université Grenoble 1 & CNRS, LPMMC (UMR 5493), B.P. 166, F-38042 Grenoble, France},
author = {Rougerie, Nicolas},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {From bosonic grand-canonical ensembles to nonlinear Gibbs measures},
url = {http://eudml.org/doc/275733},
year = {2014-2015},
}

TY - JOUR
AU - Rougerie, Nicolas
TI - From bosonic grand-canonical ensembles to nonlinear Gibbs measures
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 17
AB - In a recent paper, in collaboration with Mathieu Lewin and Phan Thành Nam, we showed that nonlinear Gibbs measures based on Gross-Pitaevskii like functionals could be derived from many-body quantum mechanics, in a mean-field limit. This text summarizes these findings. It focuses on the simplest, but most physically relevant, case we could treat so far, namely that of the defocusing cubic NLS functional on a 1D interval. The measure obtained in the limit, which lives over $H^{1/2-\epsilon }$, has been previously shown to be invariant under the NLS flow by Bourgain.
LA - eng
UR - http://eudml.org/doc/275733
ER -

References

top
  1. Ammari, Z. Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique. Habilitation à Diriger des Recherches, University of Rennes I, February 2013. 
  2. Ammari, Z., and Nier, F. Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9 (2008), 1503–1574. Zbl1171.81014MR2465733
  3. Ammari, Z., and Nier, F. Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50, 4 (2009), 042107. Zbl1214.81089MR2513969
  4. Ammari, Z., and Nier, F. Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Sup. Pisa. (2015). Zbl06474887
  5. Benedikter, N., Porta, M., and Schlein, B. Effective Evolution Equations from Quantum Dynamics, http://arxiv.org/abs/1502.02498. Zbl06492716
  6. Benguria, R., and Lieb, E. H. Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle. Phys. Rev. Lett. 50 (May 1983), 1771–1774. 
  7. Berezin, F. A. Convex functions of operators. Mat. Sb. (N.S.) 88(130) (1972), 268–276. Zbl0271.47011MR300121
  8. Bogachev, V. I.Gaussian measures. Mathematical Surveys and Monographs No. 62. American Mathematical Soc., 1998. Zbl0913.60035MR1642391
  9. Bourgain, J. Periodic nonlinear Schrödinger equation and invariant measures. Comm. Math. Phys. 166, 1 (1994), 1–26. Zbl0822.35126MR1309539
  10. Bourgain, J. Invariant measures for the 2d-defocusing nonlinear Schrödinger equation. Comm. Math. Phys. 176 (1996), 421–445. Zbl0852.35131MR1374420
  11. Bourgain, J. Invariant measures for the Gross-Piatevskii equation. Journal de Mathématiques Pures et Appliquées 76, 8 (1997), 649–02. Zbl0906.35095MR1470880
  12. Burq, N., Thomann, L., and Tzvetkov, N. Long time dynamics for the one dimensional non linear Schrödinger equation. Ann. Inst. Fourier. 63 (2013), 2137–2198. Zbl1317.35226MR3237443
  13. Burq, N., and Tzvetkov, N. Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173, 3 (2008), 449–475. Zbl1156.35062MR2425133
  14. Cacciafesta, F., and de Suzzoni, A.-S. Invariant measure for the Schrödinger equation on the real line, http://arxiv.org/abs/1405.5107. Zbl1317.35227
  15. Carlen, E. Trace inequalities and quantum entropy: an introductory course. In Entropy and the Quantum (2010), R. Sims and D. Ueltschi, Eds., vol. 529 of Contemporary Mathematics, American Mathematical Society, pp. 73–140. Arizona School of Analysis with Applications, March 16-20, 2009, University of Arizona. Zbl1218.81023MR2681769
  16. Dereziński, J., and Gérard, C.Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge, 2013. Zbl1271.81004
  17. Erdős, L., Schlein, B., and Yau, H.-T. Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22, 4 (2009), 1099–1156. Zbl1207.82031MR2525781
  18. Fannes, M., Spohn, H., and Verbeure, A. Equilibrium states for mean field models. J. Math. Phys. 21, 2 (1980), 355–358. Zbl0445.46049MR558480
  19. Fröhlich, J., Knowles, A., and Schwarz, S. On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 3 (2009), 1023–1059. Zbl1177.82016MR2504864
  20. Ginibre, J., and Velo, G. The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Commun. Math. Phys. 66, 1 (1979), 37–76. Zbl0443.35067MR530915
  21. Glimm, J., and Jaffe, A.Quantum Physics: A Functional Integral Point of View. Springer-Verlag, 1987. Zbl0461.46051MR887102
  22. Golse, F. On the Dynamics of Large Particle Systems in the Mean Field Limit. Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School “Macroscopic and large scale phenomena”, Universiteit Twente, Enschede (The Netherlands), http://arxiv.org/abs/1301.5494. MR2050595
  23. Gottlieb, A. D. Examples of bosonic de Finetti states over finite dimensional Hilbert spaces. J. Stat. Phys. 121, 3-4 (2005), 497–509. Zbl1149.82308MR2185337
  24. Hepp, K. The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35, 4 (1974), 265–277. MR332046
  25. Knowles, A. Limiting dynamics in large quantum systems. Doctoral thesis, ETH Zürich. 
  26. Lebowitz, J. L., Rose, H. A., and Speer, E. R. Statistical mechanics of the nonlinear Schrödinger equation. J. Statist. Phys. 50, 3-4 (1988), 657–687. Zbl1084.82506MR939505
  27. Lewin, M., Nam, P. T., and Rougerie, N. Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. Éc. polytech. Math. 2 (2015), 65–115, http://arxiv.org/abs/1410.0335. MR3335056
  28. Lewin, M., Nam, P. T., and Rougerie, N. Derivation of Hartree’s theory for generic mean-field Bose gases. Adv. Math. 254 (March 2014), 570–621, 1303.0981. MR3161107
  29. Lieb, E. H. The classical limit of quantum spin systems. Comm. Math. Phys. 31 (1973), 327–340. Zbl1125.82305MR349181
  30. Lieb, E. H., and Ruskai, M. B. A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30 (1973), 434–436. MR373508
  31. Lieb, E. H., and Ruskai, M. B. Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14 (1973), 1938–1941. With an appendix by B. Simon. MR345558
  32. Lieb, E. H., and Seiringer, R. Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 2 (2006), 505–537. Zbl1233.82004MR2215615
  33. Lieb, E. H., Seiringer, R., Solovej, J. P., and Yngvason, J.The mathematics of the Bose gas and its condensation. Oberwolfach Seminars. Birkhäuser, 2005. Zbl1104.82012MR2143817
  34. Lieb, E. H., and Yau, H.-T. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 1 (1987), 147–174. Zbl0641.35065MR904142
  35. Lörinczi, J., Hiroshima, F., and Betz, V.Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory. de Gruyter Studies in Mathematics. Walter de Gruyter GmbH & Company KG, 2011. Zbl1236.81003MR2848339
  36. Nam, P. T., Rougerie, N., and Seiringer, R. Ground states of large Bose systems: The Gross-Pitaevskii limit revisited, http://arxiv.org/abs/1503.07061. Zbl06595602
  37. Ohya, M., and Petz, D.Quantum entropy and its use. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1993. Zbl0891.94008MR1230389
  38. Pickl, P. A simple derivation of mean-field limits for quantum systems. Lett. Math. Phys. 97, 2 (2011), 151–164. Zbl1242.81150MR2821235
  39. Raggio, G. A., and Werner, R. F. Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 8 (1989), 980–1003. Zbl0938.82501MR1034151
  40. Rodnianski, I., and Schlein, B. Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291, 1 (2009), 31–61. Zbl1186.82051MR2530155
  41. Rougerie, N. De Finetti theorems, mean-field limits and Bose-Einstein condensation. Lecture Notes for a course at LMU, Munich, http://arxiv.org/abs/1506.05263, 2014. 
  42. Rougerie, N. Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein. Lecture notes for a cours Peccot, 2014. 
  43. Schlein, B. Derivation of effective evolution equations from microscopic quantum dynamics. Lecture Notes for a course at ETH Zurich, http://arxiv.org/abs/0807.4307. Zbl1298.35203MR3098647
  44. Simon, B.The P ( φ ) 2 Euclidean (quantum) field theory. Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. Zbl1175.81146MR489552
  45. Simon, B. The classical limit of quantum partition functions. Comm. Math. Phys. 71, 3 (1980), 247–276. Zbl0436.22012MR565281
  46. Skorokhod, A.Integration in Hilbert space. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1974. Zbl0307.28010MR466482
  47. Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52, 3 (1980), 569–615. Zbl0399.60082MR578142
  48. Summers, S. J. A Perspective on Constructive Quantum Field Theory, http://arxiv.org/abs/1203.3991. 
  49. Thomann, L., and Tzvetkov, N. Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity 23, 11 (2010), 2771. Zbl1204.35154MR2727169
  50. Tzvetkov, N. Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 58, 7 (2008), 2543–2604. Zbl1171.35116MR2498359
  51. Velo, G., and Wightman, A., Eds. Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics. Lecture notes in physics. Springer-Verlag, 1973. Zbl0325.00006MR395513
  52. Wehrl, A. General properties of entropy. Rev. Modern Phys. 50, 2 (1978), 221–260. MR496300

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.