On a generalization of Craig lattices
Hao Chen[1]
- [1] Software Engineering Institute East China Normal University Zhong Shan North Road 3663 Shanghai 200062, P.R. China
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 59-70
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topChen, Hao. "On a generalization of Craig lattices." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 59-70. <http://eudml.org/doc/275737>.
@article{Chen2013,
abstract = {In this paper we introduce generalized Craig lattices, which allows us to construct lattices in Euclidean spaces of many dimensions in the range $3332-4096$ which are denser than the densest known Mordell-Weil lattices. Moreover we prove that if there were some nice linear binary codes we could construct lattices even denser in the range $128-3272$. We also construct some dense lattices of dimensions in the range $4098-8232$. Finally we also obtain some new lattices of moderate dimensions such as $68, 84, 85, 86$, which are denser than the previously known densest lattices.},
affiliation = {Software Engineering Institute East China Normal University Zhong Shan North Road 3663 Shanghai 200062, P.R. China},
author = {Chen, Hao},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {generalized Craig lattices},
language = {eng},
month = {4},
number = {1},
pages = {59-70},
publisher = {Société Arithmétique de Bordeaux},
title = {On a generalization of Craig lattices},
url = {http://eudml.org/doc/275737},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Chen, Hao
TI - On a generalization of Craig lattices
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 59
EP - 70
AB - In this paper we introduce generalized Craig lattices, which allows us to construct lattices in Euclidean spaces of many dimensions in the range $3332-4096$ which are denser than the densest known Mordell-Weil lattices. Moreover we prove that if there were some nice linear binary codes we could construct lattices even denser in the range $128-3272$. We also construct some dense lattices of dimensions in the range $4098-8232$. Finally we also obtain some new lattices of moderate dimensions such as $68, 84, 85, 86$, which are denser than the previously known densest lattices.
LA - eng
KW - generalized Craig lattices
UR - http://eudml.org/doc/275737
ER -
References
top- R. Bacher, Dense lattices in dimensions 27-29. Invent. Math. 130 (1997), 153–158. Zbl0879.11034MR1471888
- A. Bos, J. H. Conway and N. J. A. Sloane, Further lattices packings in high dimensions. Mathematika 29 (1982), 171–180. Zbl0489.52017MR696873
- J. Carmelo Interlando, A. L. Flores and T. P. da Nóbrega Neto, A family of asymptotically good lattices having a lattice in each dimension. Inter. J. Number Theory 4 (2008), 147–154. Zbl1200.11047MR2387922
- H. Cohn and N. D. Elkies, New upper bounds on sphere packings I. Ann. of Math. 157 (2003), 689–714. Zbl1041.52011MR1973059
- H. Cohn and A. Kumar, Optimality and uniqueness of Leech lattice among lattices. Ann. of Math 170(2009), 1003–1050. Zbl1213.11144MR2600869
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. 3rd Edition, Springer, 1999. Zbl0915.52003MR1662447
- J. H. Conway and N. J. A. Sloane, Laminated lattices. Ann. of Math. 116 (1982), 593–620. Zbl0502.52016MR678483
- J. H. Conway and N. J. A. Sloane, The antipode construction for sphere packings. Invent. Math. 123 (1996), 309–313. Zbl0852.52010MR1374202
- J. H. Conway, Sphere packings, lattices, codes and greed. Proc. ICM Zurich, I (1994), 45–55. Zbl0853.52016MR1403914
- M. Craig, Extreme forms and cyclotomy. Mathematika 25 (1978), 44–56. Zbl0395.10038MR491524
- M. Craig, A cyclotomic construction for Leech’s lattice. Mathematika 25 (1978), 236–241. Zbl0413.10024MR533130
- N. D. Elkies, Mordell-Weil lattices in characteristic 2, I: Construction and first properties. Inter. Math. Research Notices 8 (1994), 343–361. Zbl0813.52017MR1289579
- N. D. Elkies, Mordell-Weil lattices in characteristic 2, II: The Leech lattice as a Mordell-Weil lattice. Invent. Math. 128 (1997),1–8. Zbl0897.11023MR1437492
- N. D. Elkies, Mordell-Weil lattices in characteristic 2, III: A Mordell-Weil lattice of rank 128. Experimental Math. 10 (2001), 467–473. Zbl1040.11041MR1917431
- A. L. Flores, J. Carmelo Interlando, T. P. da N. Neto and J. O. D. Lopos, On a refinement of Craig’s lattice. J. Pure Appl. Algebra 215 (2011), 1440–1442. Zbl1228.11094MR2769242
- C. F. Gauss, Untersuchungen über die Eigenschaften der positiven ternaren quadratischen Formen von Ludwig August Seeber. Göttingische gelehrte Anzeigen 1831, Juli 9, “Recension der...” in J. Reine Angew Math. 20, 312–320, Werke 11 (1840), 188–196.
- M. Grassl, http://www.codetables.de
- T. C. Hales, A proof of the Kepler conjecture. Ann. of Math. 162 (2005), 1065–1185. Zbl1096.52010MR2179728
- J. Kepler, The six-cornered snowflake (1611); translated by L. L. Whyte, Oxford Univ. Press, 1966.
- A. Korkine and G. Zolotareff, Sur les formes quadratiques positives. Math. Ann. 11 (1877), 242–292. MR1509914
- F. R. Kschischang and S. Pasupathy, Some ternary and quaternary codes and associated sphere packings. IEEE Trans. on Information Theory 38 (1992), 227–246. Zbl0744.94024MR1162203
- J. Leech, Notes on sphere packings. Canadian J. Math. 19 (1967), 251–267. Zbl0162.25901MR209983
- J. Leech and N. J. A. Sloane, New sphere packings in dimension . Bull. Amer. Math. Soc. 76 (1970), 1006–1010. Zbl0198.55103MR266056
- G. Nebe and N. J. A. Sloane, A Catalogue of Lattices. http://www.math.rwth-aachen.de/ Gabriele.Nebe/LATTICES/
- H.-G. Quebbemann, A Construction of integral lattices. Mathematika 31 (1984), 137–140. Zbl0538.10028MR762185
- A. Schürmann, Computational geometry of positive quadratic forms: polyhedral reduction theory, algorithms and applications. University Lecture Series, Amer. Math. Soc. 2008.
- I. Shimada, Lattices of algebraic cycles on Fermat varieties in positive characteristics. Proc. London Math. Soc. 82 (2001), 131–172. Zbl1074.14508MR1794260
- T. Shioda, Mordell-Weil lattices and sphere packings. Amer. J. Math. 113 (1991), 931–948. Zbl0756.14010MR1129298
- N. J. A. Sloane, The sphere packing problem. Proc. ICM III, Berlin (1998), 387–396. Zbl0906.11034MR1648172
- J. H. van Lint, Introduction to coding theory. 3rd Edition, Springer-Verlag, 1999. Zbl0747.94018MR1664228
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.