Ranks of quadratic twists of elliptic curves

Mark Watkins[1]; Stephen Donnelly[1]; Noam D. Elkies[2]; Tom Fisher[3]; Andrew Granville[4]; Nicholas F. Rogers[5]

  • [1] School of Mathematics and Statistics, Carslaw Building (F07), University of Sydney, NSW 2006, AUSTRALIA
  • [2] Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138, UNITED STATES OF AMERICA
  • [3] Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, UNITED KINGDOM
  • [4] Départment de mathématiques et de statistique, Pavilion André-Aisenstadt, 2920, chemin de la Tour, Montréal (Québec) H3T 1J4, CANADA
  • [5] UR Mathematics, 915 Hylan Building, University of Rochester, RC Box 270138, Rochester, NY 14627, UNITED STATES OF AMERICA

Publications mathématiques de Besançon (2014)

  • Issue: 2, page 63-98
  • ISSN: 1958-7236

Abstract

top
We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find a rank 8 twist, and discuss how our results here compare to some predictions of rank growth vis-à-vis conductor. Finally we explicate a heuristic of Granville, which when interpreted judiciously could predict that 7 is indeed the maximal rank in this quadratic twist family.

How to cite

top

Watkins, Mark, et al. "Ranks of quadratic twists of elliptic curves." Publications mathématiques de Besançon (2014): 63-98. <http://eudml.org/doc/275740>.

@article{Watkins2014,
abstract = {We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find a rank 8 twist, and discuss how our results here compare to some predictions of rank growth vis-à-vis conductor. Finally we explicate a heuristic of Granville, which when interpreted judiciously could predict that 7 is indeed the maximal rank in this quadratic twist family.},
affiliation = {School of Mathematics and Statistics, Carslaw Building (F07), University of Sydney, NSW 2006, AUSTRALIA; School of Mathematics and Statistics, Carslaw Building (F07), University of Sydney, NSW 2006, AUSTRALIA; Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138, UNITED STATES OF AMERICA; Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, UNITED KINGDOM; Départment de mathématiques et de statistique, Pavilion André-Aisenstadt, 2920, chemin de la Tour, Montréal (Québec) H3T 1J4, CANADA; UR Mathematics, 915 Hylan Building, University of Rochester, RC Box 270138, Rochester, NY 14627, UNITED STATES OF AMERICA},
author = {Watkins, Mark, Donnelly, Stephen, Elkies, Noam D., Fisher, Tom, Granville, Andrew, Rogers, Nicholas F.},
journal = {Publications mathématiques de Besançon},
keywords = {elliptic curves; quadratic twists; Selmer groups; explicit formula; Birch–Swinnerton-Dyer conjecture; algebraic rank},
language = {eng},
number = {2},
pages = {63-98},
publisher = {Presses universitaires de Franche-Comté},
title = {Ranks of quadratic twists of elliptic curves},
url = {http://eudml.org/doc/275740},
year = {2014},
}

TY - JOUR
AU - Watkins, Mark
AU - Donnelly, Stephen
AU - Elkies, Noam D.
AU - Fisher, Tom
AU - Granville, Andrew
AU - Rogers, Nicholas F.
TI - Ranks of quadratic twists of elliptic curves
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 2
SP - 63
EP - 98
AB - We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find a rank 8 twist, and discuss how our results here compare to some predictions of rank growth vis-à-vis conductor. Finally we explicate a heuristic of Granville, which when interpreted judiciously could predict that 7 is indeed the maximal rank in this quadratic twist family.
LA - eng
KW - elliptic curves; quadratic twists; Selmer groups; explicit formula; Birch–Swinnerton-Dyer conjecture; algebraic rank
UR - http://eudml.org/doc/275740
ER -

References

top
  1. J. Aguirre, F. Castañeda, J. C. Peral, High rank elliptic curves with torsion group Z/(2Z). Math. Comp. 73 (2004), 323–331 http://dx.doi.org/10.1090/S0025-5718-03-01547-3 Zbl1094.11020MR2034125
  2. B. J. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II. J. reine angew. Math. 218 (1965), 79–108. http://resolver.sub.uni-goettingen.de/purl?GDZPPN002181169 Zbl0147.02506MR179168
  3. J. Bober, Conditionally bounding analytic ranks of elliptic curves. In ANTS X (2013), Proceedings of the Tenth Algorithmic Number Theory Symposium, edited by E. W. Howe and K. S. Kedlaya, The Open Book Series, Mathematical Sciences Publishers, 135–144. http://dx.doi.org/10.2140/obs.2013.1.135 Zbl06488036MR3207411
  4. A. R. Booker, Artin’s Conjecture, Turing’s Method, and the Riemann Hypothesis. Experiment. Math 15 (2006), 385–408. http://projecteuclid.org/euclid.em/1175789775 Zbl1169.11019MR2293591
  5. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. In Computational algebra and number theory, Proceedings of the 1st MAGMA Conference held at Queen Mary and Westfield College, London, August 23–27, 1993. Edited by J. Cannon and D. Holt, published by Elsevier Science B.V., Amsterdam (1997), 235–265. Cross-referenced as J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. http://magma.maths.usyd.edu.au Zbl0898.68039MR1484478
  6. A. Bremner, J. W. S. Cassels, On the equation Y 2 = X ( X 2 + p ) . Math. Comp. 42 (1984), no. 165, 257–264. http://dx.doi.org/10.1090/S0025-5718-1984-0726003-4 Zbl0531.10014MR726003
  7. A. Brumer, The average rank of elliptic curves I. Inventiones math. 109 (1992), 445–472. http://dx.doi.org/10.1007/BF01232033 Zbl0783.14019MR1176198
  8. J. W. S. Cassels, Second descents for elliptic curves. J. reine angew. Math 494 (1998), 101–127. See also Arithmetic on curves of genus 1, IV. Proof of the Hauptvermutung. J. reine angew. Math 211 (1962), 95–112. http://resolver.sub.uni-goettingen.de/purl?GDZPPN002179873 Zbl0106.03706MR163915
  9. H. Cohen, Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics 193 (2000), Springer. Zbl0977.11056MR1728313
  10. K. Conrad, Partial Euler products on the critical line. Canad. J. Math. 57 (2005), 267–297. http://dx.doi.org/10.4153/CJM-2005-012-6 Zbl1068.11058MR2124918
  11. J. B. Conrey, J. P. Keating, M. O. Rubinstein, N. C. Snaith, On the frequency of vanishing of quadratic twists of modular L -functions. In Number theory for the millennium, I (Urbana, IL, 2000), Papers from the conference held at the University of Illinois at Urbana–Champaign, Urbana, IL, May 21–26, 2000. Edited by M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp, published by A K Peters, Ltd., Natick, MA (2002), 301–315. Preprint at http://www.hpl.hp.com/techreports/2000/HPL-BRIMS-2000-23.pdf Zbl1044.11035MR1956231
  12. J. E. Cremona, B. Mazur, Visualizing elements in the Shafarevich-Tate group. Experiment. Math. 9, no. 1 (2000), 13–28. http://projecteuclid.org/euclid.em/1046889588 Zbl0972.11049MR1758797
  13. S. Donnelly, Computing the Cassels-Tate pairing on Ш ( E ) [ 2 ] in Magma. Unpublished notes (2008). 
  14. A. Dujella, A. S. Janfada, S. Salami, A search for high rank congruent number elliptic curves. J. Integer Seq. 12 (2009), 09.5.8. http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Janfada/janfada3.ps Zbl1201.11058MR2520839
  15. N. D. Elkies, Letter to Prof D. B. Zagier (1988). Second part of the Appendix to [57]. 
  16. N. D. Elkies, Z 28 in E(Q), etc. NMBRTHRY list posting, May 2006. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0605&L=NMBRTHRY&P=50 
  17. N. D. Elkies, j=0, rank 15; also 3-rank 6 and 7 in real and imaginary quadratic fields, NMBRTHRY list posting, Dec 2009. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0912&L=NMBRTHRY&P=14012 
  18. N. D. Elkies, N. F. Rogers, Elliptic Curves x 3 + y 3 = k of High Rank. In Algorithmic number theory, ANTS-VI (Burlington 2004), ed. by D. Buell, Springer LNCS 3076 (2004), 184–193. http://dx.doi.org/10.1007/978-3-540-24847-7_13 Zbl1125.11326MR2137353
  19. N. D. Elkies, M. Watkins, Elliptic curves of large rank and small conductor. In Algorithmic number theory, ANTS-VI (Burlington 2004), ed. by D. Buell, Springer LNCS 3076 (2004), 42–56. http://dx.doi.org/10.1007/978-3-540-24847-7_3 Zbl1125.11327MR2137342
  20. D. W. Farmer, S. M. Gonek, C. P. Hughes, The maximum size of L -functions. J. reine Angew. Math. 609 (2007), 215–236. http://dx.doi.org/10.1515/CRELLE.2007.064 Zbl1234.11109MR2350784
  21. T. A. Fisher, Higher descents on an elliptic curve with a rational 2-torsion point, preprint, http://www.dpmms.cam.ac.uk/~taf1000/papers/higherdesc.html 
  22. F. Gouvêa, B. Mazur, The square-free sieve and the rank of elliptic curves. J. Amer. Math. Soc. 4 (1991), 1–23. http://www.jstor.org/stable/2939253 Zbl0725.11027MR1080648
  23. J. E. Gower, S. S. Wagstaff Jr., Square form factorization. Math. Comp. 77 (2008), 551–588. http://dx.doi.org/10.1090/S0025-5718-07-02010-8 Zbl1126.11004MR2353967
  24. A. P. Guinand, Summation Formulae and Self-reciprocal Functions (III). Quarterly J. Math., 13 (1942), 30–39. http://dx.doi.org/10.1093/qmath/os-13.1.30 Zbl0060.26001MR7183
  25. D. R. Heath-Brown, The size of Selmer groups for the congruent number problem, II. Inv. Math. 118, no. 1 (1994), 331–370. http://dx.doi.org/10.1007/BF01231536 Zbl0815.11032MR1292115
  26. T. Honda, Isogenies, rational points and section points of group varieties. Japan. J. Math., 30 (1960), 84–101. Zbl0109.39602MR155828
  27. C. Hooley, On the Pellian equation and the class number of indefinite binary quadratic forms. J. reine Angew. Math., 353 (1984), 98–131. http://eudml.org/doc/152668 Zbl0539.10019MR765829
  28. M.-A. Lacasse, Sur la répartition des unités dans les corps quadratiques réels. Master’s thesis, Université de Montréal, December 2011. http://hdl.handle.net/1866/6881 
  29. S. Lang, Hyperbolic and Diophantine analysis, Bull. AMS, 14 (1986), 159–205. http://dx.doi.org/10.1090/S0273-0979-1986-15426-1 Zbl0602.14019MR828820
  30. A. F. Lavrik, On functional equations of Dirichlet functions. Mat. USSR Izv. 1, no. 2 (1967), 421–432. http://dx.doi.org/10.1070/IM1967v001n02ABEH000565 Zbl0188.10402MR213310
  31. S. McMath, F. Crabbe, D. Joyner, Continued Fractions and Parallel SQUFOF, Int. J. Pure Appl. Math. 34, no. 1 (2007), 19–38. http://ijpam.eu/contents/2007-34-1/2/2.pdf Zbl1121.11079MR2284178
  32. R. Martin, W. McMillen, An elliptic curve over Q with rank at least 24. NMBRTHRY Listserver, May 2000. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0005&L=NMBRTHRY&P=2105 
  33. K. Matsuno, Elliptic curves with large Tate-Shafarevich groups over a number field. Math. Res. Lett. 16 (2009), 449–461. http://tinyurl.com/muoz5zl Zbl1191.11018MR2511625
  34. F. Mertens, Ein Beitrag zur analytischen Zahlentheorie. (German) [A contribution to analytic number theory]. J. reine angew. Math. 78 (1874), 46–62. http://resolver.sub.uni-goettingen.de/purl?GDZPPN002155656 
  35. J.-F. Mestre, Construction d’une courbe elliptique de rang 12 . (French) [Construction of an elliptic curve with rank at least 12]. C. R. Acad. Sci. Paris, 295, série I (1982), 643–644. Zbl0541.14027MR688896
  36. J.-F. Mestre, Formules explicities et minorations de conducteurs de variétés algébriques. (French) [Explicit formulas and lower bounds on conductors of algebraic varieties]. Compositio Math. 58 (1986), 209–232. http://eudml.org/doc/89769 Zbl0607.14012MR844410
  37. J.-F. Mestre, Courbes elliptiques de rang 11 sur Q(t) (French). [Elliptic curves of rank at least 11 over Q ( t ) ]. C. R. Acad. Sci. Paris, 313, série I (1991), 139–142. http://gallica.bnf.fr/ark:/12148/bpt6k57325582/f143 Zbl0745.14013MR1121576
  38. J.-F. Mestre, Courbes elliptiques de rang 12 sur Q(t) (French). [Elliptic curves of rank at least 12 over Q ( t ) ]. C. R. Acad. Sci. Paris, 313, série I (1991), 171–174. http://gallica.bnf.fr/ark:/12148/bpt6k57325582/f175 Zbl0749.14026MR1122689
  39. P. Monsky, appendix to [25]. 
  40. K.-i. Nagao, Examples of elliptic curves over Q with rank 17 . Proc. Japan Acad. Ser. A Math. Sci. 68, no. 9 (1992), 287–9. http://dx.doi.org/10.3792/pjaa.68.287 Zbl0791.14014MR1202634
  41. K.-i. Nagao, Construction of high-rank elliptic curves. Kobe J. Math. 11 (1994), 211–219. Zbl0848.11026MR1329433
  42. A. Néron, Footnote in Œuvres de Henri Poincaré. Tome V, 1950, Gabay. http://www.univ-nancy2.fr/poincare/bhp/pdf/hp1950oea.pdf 
  43. S. Omar, Non-vanishing of Dirichlet L-functions at the central point. In Algorithmic Number Theory, ANTS-VIII (Calgary 2008), edited by A. J. van der Poorten and A. Stein. Springer LNCS 5011 (2008), 443–453. http://dx.doi.org/10.1007/978-3-540-79456-1_30 Zbl1205.11097MR2467864
  44. R. Paley, N. Wiener, Fourier transforms in the Complex Domain. AMS Coll. Publ. 19, 1934. Twelfth printing 2000, http://www.ams.org/bookstore-getitem/item=COLL-19 Zbl0011.01601
  45. C. S. Rajan, On the size of the Shafarevich-Tate group of elliptic curves over function fields. Compositio Math. 105 (1997), no. 1, 29–41. http://dx.doi.org/10.1023/A:1000105104709 Zbl1044.11583MR1436742
  46. N. F. Rogers, Rank computations for the congruent number elliptic curves. Experiment. Math. 9, no. 4 (2000), 591–4. http://projecteuclid.org/euclid.em/1045759524 Zbl1050.11061MR1806294
  47. N. F. Rogers, Elliptic curves x 3 + y 3 = k with high rank. Doctoral thesis, Harvard University (Cambridge, MA, USA), April 2004. Zbl1125.11326MR2705989
  48. K. Rubin, A. Silverberg, Ranks of elliptic curves in families of quadratic twists. Experiment. Math. 9 no. 4 (2000), 583–590. http://projecteuclid.org/euclid.em/1045759523 Zbl0959.11023MR1806293
  49. K. Rubin, A. Silverberg, Rank frequencies for quadratic twists of elliptic curves. Experiment. Math. 10, no. 4 (2001), 559–570. http://projecteuclid.org/euclid.em/1069855256 Zbl1035.11025MR1881757
  50. K. Rubin, A. Silverberg, Ranks of Elliptic Curves. Bull. AMS, 39 no. 4 (2002), 455–474. http://dx.doi.org/10.1090/S0273-0979-02-00952-7 Zbl1052.11039MR1920278
  51. M. O. Rubinstein, Elliptic curves of high rank and the Riemann zeta function. Experiment. Math 22. no. 4 (2013), 465–480. http://dx.doi.org/10.1080/10586458.2013.840870 Zbl1294.11154MR3171106
  52. E. F. Schaefer, M. Stoll, How to do a p -descent on an elliptic curve. Trans. Amer. Math. Soc. 356 (2004), 1209–1231. http://dx.doi.org/10.1090/S0002-9947-03-03366-X Zbl1119.11029MR2021618
  53. U. Schneiders, H. G. Zimmer, The rank of elliptic curves upon quadratic extension. In Computational number theory (Debrecen 1989), ed. A. Pethő, M. E. Pohst, H. C. Williams, and H. G. Zimmer, published by Walter de Gruyter & Co., Berlin (1991), 239–260. Zbl0743.14023MR1151868
  54. D. Shanks, On Gauss and composition, II. In Number Theory and Applications (1989), edited by R. A. Mollin. Proceedings of the NATO Advanced Study Institute (Banff 1988), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 265. Kluwer Academic Publishers Group, Dordrecht, 1989, 179–204. See also [31]. Zbl0691.10011MR1123065
  55. D. T. Tèĭt [J. T. Tate], I. R. Šafarevič, The rank of elliptic curves. Soviet Math. Dokl. 8 (1967), 917–920. [trans. J. W. S. Cassels from Dokl. Akad. Nauk SSSR175 (1967), 770–773.] Zbl0168.42201MR237508
  56. D. Ulmer, Elliptic curves with large rank over function fields. Ann. of Math. (2) 155 (2002), no. 1, 295–315. http://www.jstor.org/stable/3062158 Zbl1109.11314MR1888802
  57. M. Watkins, A note on integral points on elliptic curves. J. Théor. Nombres Bordeaux, 18 (2006), no. 3, 707–719. http://eudml.org/doc/249658 Zbl1124.11028MR2330437
  58. M. Watkins, On elliptic curves and random matrix theory. J. Théor. Nombres Bordeaux, 20 (2008), no. 3, 829–845. http://dx.doi.org/10.5802/jtnb.653 Zbl1193.11058MR2523320
  59. A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. (French) [On the “explicit formulæ” in the theory of prime numbers]. In Festkrift tillaegnad Marcel Riesz, edited by C. W. K. Gleerup. Supplementary tome of Meddelanden Frän Lunds Univ. mat. Sem. [Comm. Sém. Math. Univ. Lund], 1952, 252–265. Also in Weil’s Œuvres Scientifiques [Collected Works], Vol. 2 (1952b), 48–61. Zbl0049.03205MR53152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.