Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line
Thomas Christ[1]; Justas Kalpokas[2]
- [1] Department of Mathematics Würzburg University Emil-Fischer-Str. 40, 97074 Würzburg
- [2] Faculty of Mathematics and Informatics Vilnius University Naugarduko 24, 03225 Vilnius, Lithuania
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 285-305
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topChrist, Thomas, and Kalpokas, Justas. "Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 285-305. <http://eudml.org/doc/275751>.
@article{Christ2013,
abstract = {We establish unconditional lower bounds for certain discrete moments of the Riemann zeta-function and its derivatives on the critical line. We use these discrete moments to give unconditional lower bounds for the continuous moments $I_\{k,l\}(T)=\int _\{0\}^\{T\}|\zeta ^\{(l)\}(\frac\{1\}\{2\}+it)|^\{2k\}dt$, where $l$ is a non-negative integer and $k\ge 1$ a rational number. In particular, these lower bounds are of the expected order of magnitude for $I_\{k,l\}(T)$.},
affiliation = {Department of Mathematics Würzburg University Emil-Fischer-Str. 40, 97074 Würzburg; Faculty of Mathematics and Informatics Vilnius University Naugarduko 24, 03225 Vilnius, Lithuania},
author = {Christ, Thomas, Kalpokas, Justas},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Riemann zeta-function; discrete moment; lower bound},
language = {eng},
month = {9},
number = {2},
pages = {285-305},
publisher = {Société Arithmétique de Bordeaux},
title = {Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line},
url = {http://eudml.org/doc/275751},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Christ, Thomas
AU - Kalpokas, Justas
TI - Lower bounds of discrete moments of the derivatives of the Riemann zeta-function on the critical line
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 285
EP - 305
AB - We establish unconditional lower bounds for certain discrete moments of the Riemann zeta-function and its derivatives on the critical line. We use these discrete moments to give unconditional lower bounds for the continuous moments $I_{k,l}(T)=\int _{0}^{T}|\zeta ^{(l)}(\frac{1}{2}+it)|^{2k}dt$, where $l$ is a non-negative integer and $k\ge 1$ a rational number. In particular, these lower bounds are of the expected order of magnitude for $I_{k,l}(T)$.
LA - eng
KW - Riemann zeta-function; discrete moment; lower bound
UR - http://eudml.org/doc/275751
ER -
References
top- T. Christ, J. Kalpokas, Upper bounds for discrete moments of the derivatives of the riemann zeta-function on the critical line, Lith. Math. Journal52 (2012) 233–248. Zbl1322.11089MR3020940
- R.D. Dixon, L. Schoenfeld, The size of the Riemann zeta-function at places symmetric with respect to the point , Duke Math. J.33 (1966), 291–292. Zbl0154.04601MR190103
- H.M. Edwards, Riemann’s zeta function, Academic Press, New York 1974. Zbl0315.10035MR466039
- S.M. Gonek, Mean values of the Riemann zeta-function and its derivatives, Invent. Math.75:1 (1984), 123–141. Zbl0531.10040MR728143
- J. Gram, Sur les zéros de la fonction de Riemann, Acta Math.27 (1903), 289–304. Zbl34.0461.01MR1554986
- G.H. Hardy, J.E. Littlewood, Contributions to the theory of the Riemann zeta-function, Proc. Royal Soc. (A)113 (1936), 542–569.
- D. R. Heath-Brown, Fractional Moments of the Riemann Zeta-Function J. London Math. Soc.2-24 (1981) 65–78. Zbl0431.10024MR623671
- A.E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2)27 (1926), 273–300. Zbl53.0313.01MR1575391
- A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York 1985. Zbl0556.10026MR792089
- J. Kalpokas, J. Steuding, On the Value-Distribution of the Riemann Zeta-Function on the Critical Line, Moscow Jour. Combinatorcs and Number Theo.1 (2011), 26–42. Zbl1302.11060MR2948324
- J. Kalpokas, M. Korolev, J. Steuding, Negative values of the Riemann Zeta-Function on the Critical Line, preprint, available at arXiv:1109.2224. Zbl1292.11094
- M.B. Milinovich, N. Ng, Lower bound for the moments of , preprint, available at arXiv:0706.2321v1. Zbl1296.11109
- M.B. Milinovich, Moments of the Riemann zeta-function at its relative extrema on the critical line, preprint, available at arXiv:1106.1154. MR2861534
- N. Ng, A discrete mean value of the derivative of the Riemann zeta function, Mathematika54 (2007), 113–155. Zbl1170.11026MR2428211
- M. Radziwill, The 4.36th moment of the Riemann Zeta-function, Int. Math. Res. Not.18 (2012), 4245–4259. Zbl1290.11120MR2975381
- K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series , Hardy-Ramanujan J. I 1 (1978), 1–15. Zbl0411.10013MR565298
- Z. Rudnick, K. Soundararajan, Lower bounds for moments of L-functions, Proc. Natl. Sci. Acad. USA102 (2005), 6837–6838. Zbl1159.11317MR2144738
- R. Spira, An inequality for the Riemann zeta function, Duke Math. J.32 (1965), 247–250. Zbl0154.04501MR176964
- K. Soundararajan Moments of the Riemann zeta function, Ann. Math. (2) 170, No. 2, 981-993 (2009) Zbl1251.11058MR2552116
- G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge studies in advanced mathematics 46, Cambridge University Press 1995. Zbl0831.11001MR1342300
- E.C. Titchmarsh, The Riemann zeta-function, 2nd edition, revised by D.R. Heath-Brown, Oxford University Press 1986. Zbl0601.10026MR882550
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.