Quantum ergodicity and quantum limits for sub-Riemannian Laplacians

Yves Colin de Verdière[1]; Luc Hillairet[2]; Emmanuel Trélat[3]

  • [1] Université de Grenoble, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex France
  • [2] Université d’Orléans, Fédération Denis Poisson, Laboratoire MAPMO route de Chartres 45067 Orléans Cedex 2 France
  • [3] Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France F-75005, Paris France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-17
  • ISSN: 2266-0607

Abstract

top
This paper is a proceedings version of [6], in which we state a Quantum Ergodicity (QE) theorem on a 3D contact manifold, and in which we establish some properties of the Quantum Limits (QL).We consider a sub-Riemannian (sR) metric on a compact 3D manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We state a QE theorem for the eigenfunctions of any associated sR Laplacian, under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized canonical contact measure. To our knowledge, this is the first extension of the usual Schnirelman theorem to a hypoelliptic operator. We provide as well a decomposition result of QL’s, which is valid without any ergodicity assumption. We explain the main steps of the proof, and we discuss possible extensions to other sR geometries.

How to cite

top

Colin de Verdière, Yves, Hillairet, Luc, and Trélat, Emmanuel. "Quantum ergodicity and quantum limits for sub-Riemannian Laplacians." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-17. <http://eudml.org/doc/275752>.

@article{ColindeVerdière2014-2015,
abstract = {This paper is a proceedings version of [6], in which we state a Quantum Ergodicity (QE) theorem on a 3D contact manifold, and in which we establish some properties of the Quantum Limits (QL).We consider a sub-Riemannian (sR) metric on a compact 3D manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We state a QE theorem for the eigenfunctions of any associated sR Laplacian, under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized canonical contact measure. To our knowledge, this is the first extension of the usual Schnirelman theorem to a hypoelliptic operator. We provide as well a decomposition result of QL’s, which is valid without any ergodicity assumption. We explain the main steps of the proof, and we discuss possible extensions to other sR geometries.},
affiliation = {Université de Grenoble, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex France; Université d’Orléans, Fédération Denis Poisson, Laboratoire MAPMO route de Chartres 45067 Orléans Cedex 2 France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France F-75005, Paris France},
author = {Colin de Verdière, Yves, Hillairet, Luc, Trélat, Emmanuel},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quantum ergodicity and quantum limits for sub-Riemannian Laplacians},
url = {http://eudml.org/doc/275752},
year = {2014-2015},
}

TY - JOUR
AU - Colin de Verdière, Yves
AU - Hillairet, Luc
AU - Trélat, Emmanuel
TI - Quantum ergodicity and quantum limits for sub-Riemannian Laplacians
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 17
AB - This paper is a proceedings version of [6], in which we state a Quantum Ergodicity (QE) theorem on a 3D contact manifold, and in which we establish some properties of the Quantum Limits (QL).We consider a sub-Riemannian (sR) metric on a compact 3D manifold with an oriented contact distribution. There exists a privileged choice of the contact form, with an associated Reeb vector field and a canonical volume form that coincides with the Popp measure. We state a QE theorem for the eigenfunctions of any associated sR Laplacian, under the assumption that the Reeb flow is ergodic. The limit measure is given by the normalized canonical contact measure. To our knowledge, this is the first extension of the usual Schnirelman theorem to a hypoelliptic operator. We provide as well a decomposition result of QL’s, which is valid without any ergodicity assumption. We explain the main steps of the proof, and we discuss possible extensions to other sR geometries.
LA - eng
UR - http://eudml.org/doc/275752
ER -

References

top
  1. A. Agrachev, D. Barilari, U. Boscain, On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 355–388. Zbl1236.53030MR2875644
  2. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 3, 793–807. Zbl1192.53029MR2629880
  3. U. Boscain, C. Laurent, The Laplace-Beltrami operator in almost-Riemannian geometry, Ann. Institut Fourier (Grenoble) 63 (2013), 1739–1770. Zbl1314.58017MR3186507
  4. Y. Colin de Verdière, Calcul du spectre de certaines nilvariétés compactes de dimension 3, (French) [Calculation of the spectrum of some three-dimensional compact nilmanifolds], Séminaire de Théorie Spectrale et Géométrie (Grenoble) (1983–1984), no. 2, 1–6. Zbl0738.53029MR1046043
  5. Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Commun. Math. Phys. 102 (1985), 497–502. Zbl0592.58050MR818831
  6. Y. Colin de Verdière, L. Hillairet, E. Trélat, Spectral asymptotics for sub-Riemannian Laplacians. I: quantum ergodicity and quantum limits in the 3D contact case., http://arxiv.org/abs/1504.07112 (2015), 41 pages. 
  7. Y. Colin de Verdière, L. Hillairet, E. Trélat, Spectral asymptotics for sub-Riemannian Laplacians. II: microlocal Weyl measures, Work in progress. 
  8. H. Duistermaat, V. Guillemin. The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39–79. Zbl0307.35071MR405514
  9. P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993), no. 2, 559–607. Zbl0788.35103MR1233448
  10. B. Helffer, A. Martinez, and D. Robert. Ergodicité et limite semi-classique, Commun. Math. Phys. 109 (1987), 313–326. Zbl0624.58039MR880418
  11. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. Zbl0156.10701MR222474
  12. L. Hörmander. The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. Zbl0164.13201MR609014
  13. D. Jakobson, Y. Safarov, A. Strohmaier & Y. Colin de Verdière (Appendix), The semi-classical theory of discontinuous systems and ray-splitting billiards, American J. Math. (to appear). Zbl06483998
  14. R.B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984-1985), 134–182. Zbl0599.35139MR801291
  15. G. Métivier, Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques, Comm. Partial Differential Equations 1 (1976), no. 5, 467–519. Zbl0376.35012MR427858
  16. R. Montgomery, Hearing the zero locus of a magnetic field, Commun. Math. Phys. 168 (1995), 651–675. Zbl0827.58076MR1328258
  17. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI, 2002. Zbl1044.53022MR1867362
  18. K. Petersen, Ergodic theory, Corrected reprint of the 1983 original. Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1989. xii+329 pp. Zbl0676.28008MR1073173
  19. L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. Zbl0346.35030MR436223
  20. A.I. Shnirelman, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181–182. Zbl0324.58020MR402834
  21. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919–941. Zbl0643.58029MR916129
  22. S. Zelditch, Recent developments in mathematical quantum chaos, Current developments in mathematics, 2009, 115–204, Int. Press, Somerville, MA (2010). Zbl1223.37113MR2757360
  23. S. Zelditch, M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys. 175 (1996), no. 3, 673-682. Zbl0840.58048MR1372814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.